首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Is increased UV-B a threat to crop photosynthesis and productivity?   总被引:17,自引:0,他引:17  
It has been suggested that increases in ground-level UV-B, as a result of stratospheric ozone depletion, may have major deleterious effects on crop photosynthesis and productivity. The direct consequences of such effects have been projected by some as a world-wide decrease in crop yields of 20–25%. Further losses, or unrealized gains, have also been suggested as a result of increased UV-B counteracting the beneficial effects of elevated atmospheric CO2. Deleterious UV-B effects may be largely partitioned between damage to the plant genome and damage to the photosynthetic machinery. Direct damage to DNA is a common result of absorption of high energy UV-B photons. However, most plants possess repair mechanisms adequate to deal with the levels of damage expected from projected increases in ground-level UV-B. In addition, most plants have the ability to increase production of UV-absorbing compounds in their leaves as a result of exposure to UV-B, UV-A and visible radiation. These compounds contribute substantially to reducing UV-B damage in situ. It has also been shown that in some plants, under the proper conditions, almost every facet of the photosynthetic machinery can be damaged directly by very high UV-B exposures. However, electron transport, mediated by Photosystem II (PS II) appears to be the most sensitive part of the system. Various laboratories have reported damage to virtually all parts of the PS II complex from the Mn binding site to the plastoquinone acceptor sites on the opposite surface of the thylakoid membrane. However, a critical review of the literature with emphasis on exposure protocols and characterization of the radiation environment, revealed that most growth chamber and greenhouse experiments and very many field experiments have been conducted at unrealistic or indeterminate UV-B exposure levels, especially with regard to the spectral balance of their normal radiation environment. Thus, these experiments have led directly to large overestimates of the potential for damage to crop photosynthesis and yield within the context of 100 year projections for stratospheric ozone depletion. Indeed, given the massive UV-B exposures necessary to produce many of these effects, we suggest it is unlikely that they would occur in a natural setting and urge reconsideration of the purported impacts of projected increases of UV-B on crop productivity.Abbreviations Ci leaf internal CO2 partial pressure - CPD cyclobutane pyrimidine dimer - CVY cultivar-year, one crop cultivar grown for one season - FV/FM variable chlorophyll fluorescence ratio - kJ m–2 d–1 daily radiation energy flux - PAR photosynthetically active radiation - PAS300 UV-BBE weighted by the generalized plant action spectrum normalized to 300 nm - TOMS total ozone mapping spectrometer instrument mounted aboard the National Aeronautics and Space Administration's Nimbus-7 satellite - UV-A ultraviolet-A radiation (400 nm>320 nm) - UV-B ultraviolet-B radiation (320 nm280 nm) - UV-BBE biologically effective UV-B (in this paper, irradiance weighted by the generalized plant action spectrum) The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

2.
Several species of marine benthic algae, four species of phytoplankton and two species of seagrass have been subjected to ultraviolet B irradiation for varying lengths of time and the effects on respiration, photosynthesis and fluorescence rise kinetics studied. No effect on respiration was found. Photosynthesis was inhibited to a variable degree in all groups of plants after irradiation over periods of up to 1 h and variable fluorescence was also inhibited in a similar way. The most sensitive plants were phytoplankton and deep-water benthic algae. Intertidal benthic algae were the least sensitive to UV-B irradiation and this may be related to adaptation, through the accumulation of UV-B screening compounds, to high light/high UV-B levels. Inhibition of variable fluorescence (Fv) of the fluorescence rise curve was a fast and sensitive indicator of UV-B damage. Two plants studied, a brown alga and a seagrass, showed very poor recovery of Fv over a period of 32 h.Abbreviations Fm- fluorescence yield with reaction centres closed - Fo- fluorescence yield with reaction centres open - Fv- variable fluorescence - PAR- photosynthetically active radiation - P680- primary donor of Photosystem II - O- primary quencher of Photosystem II - QA- primary quinone acceptor of Photosystem II - UV-B- ultraviolet B  相似文献   

3.
The regulation of Crassulacean acid metabolism (CAM) in the fern Pyrrosia piloselloides (L.) Price was investigated in Singapore on two epiphytic populations acclimated to sun and shade conditions. The shade fronds were less succulent and had a higher chlorophyll content although the chlorophyll a:b ratio was lower and light compensation points and dark-respiration rates were reduced. Dawn-dusk variations in titratable acidity and carbohydrate pools were two to three times greater in fronds acclimated to high photosynthetically active radiation (PAR), although water deficits were also higher than in shade fronds. External and internal CO2 supply to attached fronds of the fern was varied so as to regulate the magnitude of CAM activity. A significant proportion of titratable acidity was derived from the refixation of respiratory CO2 (27% and 35% recycling for sun and shade populations, respectively), as measured directly under CO2-free conditions. Starch was shown to be the storage carbodydrate for CAM in Pyrrosia, with a stoichiometric reduction of C3-skeleton units in proportion to malic-acid accumulation. Measurements of photosynthetic O2 evolution under saturating CO2 were used to compare the light responses of sun and shade fronds for each CO2 supply regime, and also following the imposition of a photoinhibitory PAR treatment (1600 mol·m-2·s-1 for 3 h). Apparent quantum yield declined following the high-PAR treatment for sun- and shade-adapted plants, although for sun fronds CAM activity derived from respiratory CO2 prevented any further reduction in photosynthetic efficiency. Recycling of respiratory CO2 by shade plants could only partly prevent photoinhibitory damage. These observations provide experimental evidence that respiratory CO2 recycling, ubiquitous in CAM plants, may have developed so as to alleviate photoinhibition.Abbreviations and symbols CAM Crassulacean acid metabolism - FM maximal photosystem II fluorescence - FT terminal steady-state fluorescence - PAR photosynthetically active radiation, 400–700 nm - H+ (dawn-dusk) variation in titratable acidity  相似文献   

4.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

5.
The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (Pn) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable Pn, has been implicated in the creation of the energy imbalance. The radiation induced damage of PS II hinders the flow of electron from QA to QB resulting in a loss in the redox homeostasis between the QA to QB leading to an accumulation of QA. The accumulation of QA generates an excitation pressure that diminishes the PS II-mediated O2 evolution, maximal photochemical potential (Fv/Fm) and PS II quantum yield (ΦPS II). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.  相似文献   

6.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

7.
Low light adapted cultures of the marine diatom Thalassiosira pseudonana (3H) were cultured and incubated for 30 min under different ultraviolet (UV) wavelengths of near monochromatic light with and without background photosynthetically active radiation (PAR, 380–700 nm). Maximum damage to the quantum yield for stable charge separations was found in the UVB (280-320 nm) wavelengths without background PAR light while the damage under PAR was 30% less. UV induced damage to carbon fixation in the cells was described by a function similar to non-linear functions of inhibiting irradiance previously published with the exception that damage was slightly higher in the UVA (320–380). Various measurements of fluorescent transients were measured and the results indicate localised damage most likely on the acceptor side of the Photosystem II reaction center. However, dark adapted measurements of fluorescence transients with and without DCMU do not result in similar functions. This is also true for the relationships between fluorescence transients and carbon fixation for this species of marine diatom. The correlation between the weightings H from measurements of carbon fixation and the quantum yield for stable charge separation as calculated from induction curves with DCMU and without DCMU is R 2 0.44 and R 2 0.78, respectively. The slopes of the two measurements are 3.8 and 1.4, respectively. The strong correlation between the weightings of the induction curves without DCMU and carbon fixation are due to a loss of electron transport from the reaction center to plastoquinone. Under these experimental conditions of constant photon flux density (PFD) this is manifested as a strong linear relationship between the decrease in the operational quantum yield of Photosystem II and carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280–320 nm; 60 μmol m−2 s−1) exposure alone and in combination with photosynthetically active radiation (PAR; 400–800 nm; 200 μmol m−2 s−1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples.  相似文献   

9.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

10.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

11.
Visser  A. J.  Tosserams  M.  Groen  M. W.  Kalis  G.  Kwant  R.  Magendans  G. W. H.  Rozema  J. 《Plant Ecology》1997,128(1-2):209-222
Seedlings of Vicia faba L. (cv. Minica) were grown in a factorial experiment in a greenhouse. The purpose of the study was to determine whether CO2 enrichment and supplemental UV-B radiation affect leaf optical properties and whether the combined effects differ from single factor effects. Seedlings were grown at either 380 mol mol-1 or 750 mol mol-1 CO2 and at four levels of UV-B radiation. After 20 and 40 days of treatment, absorptance, transmittance and reflectance of photosynthetically active radiation (PAR) were measured on the youngest fully developed leaf. On the same leaf, the specific leaf area on a fresh weight basis (SLAfw), chlorophyll content, UV-B absorbance, transmittance of UV light and stomatal index were measured. UV-B radiation significantly increased PAR absorptance and decreased PAR transmittance. The increased PAR absorptance can be explained by an increased chlorophyll content in response to UV-B radiation. Leaf transmittance of UV radiation decreased with increasing UV-B levels mainly caused by increased absorbance of UV absorbing compounds. UV-B radiation decreased both the stomatal density and epidermal cell density of the abaxial leaf surface, leaving the stomatal index unchanged. Effects of CO2 enrichment were less pronounced than those of UV-B radiation. The most important CO2 effect was an increase in stomatal density and epidermal cell density of the adaxial leaf surface. The stomatal index was not affected. No interaction between CO2 and UV-B radiation was found. The results are discussed in relation to the internal light environment of the leaf.  相似文献   

12.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

13.
14.
The present study examined the effect of UV andphotosynthetically active radiation (PAR) onphotoinhibition and recovery in the Phaeophyte Macrocystis pyrifera, the Rhodophyte Chondruscrispus and the Chlorophyte Ulva lactuca underoutdoor culture conditions. There was an increase inphotoinhibition as a consequence of high exposure toUV-B radiation in M. pyrifera, however, highlevels of PAR accounted for most of thephotoinhibition in C. crispus and U.lactuca. Photodamage by UV-A, UV-B and PAR wascompletely repaired within 5 h and effective quantumyield reached pretreatment values in the three speciesstudied. Species were less susceptible tophotoinhibition after being incubated for 5 d underhigh exposures of natural irradiance suggesting aphotoadaptive process. The recovery of the effectivequantum yield was impaired by long exposure to highlevels of UV-B in C. crispus and UV-A, UV-B andPAR in M. pyrifera. This suggests a differentkind of damage by UV-A and PAR radiation, one to thephotosynthetic apparatus and another which affects therepair mechanism of some species. There was anincrease in UV-absorption ( 330 nm) in M. pyrifera and C. crispus within four days ofthe initiation of the experiment suggesting that thesespecies photoprotect their photosynthetic system whenexposed to elevated UV and PAR levels.  相似文献   

15.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

16.
Scaling CO2-photosynthesis relationships from the leaf to the canopy   总被引:11,自引:0,他引:11  
Responses of individual leaves to short-term changes in CO2 partial pressure have been relatively well studied. Whole-plant and plant community responses to elevated CO2 are less well understood and scaling up from leaves to canopies will be complicated if feedbacks at the small scale differ from feedbacks at the large scale. Mathematical models of leaf, canopy, and ecosystem processes are important tools in the study of effects on plants and ecosystems of global environmental change, and in particular increasing atmospheric CO2, and might be used to scale from leaves to canopies. Models are also important in assessing effects of the biosphere on the atmosphere. Presently, multilayer and big leaf models of canopy photosynthesis and energy exchange exist. Big leaf models — which are advocated here as being applicable to the evaluation of impacts of global change on the biosphere — simplify much of the underlying leaf-level physics, physiology, and biochemistry, yet can retain the important features of plant-environment interactions with respect to leaf CO2 exchange processes and are able to make useful, quantitative predictions of canopy and community responses to environmental change. The basis of some big leaf models of photosynthesis, including a new model described herein, is that photosynthetic capacity and activity are scaled vertically within a canopy (by plants themselves) to match approximately the vertical profile of PPFD. The new big leaf model combines physically based models of leaf and canopy level transport processes with a biochemically based model of CO2 assimilation. Predictions made by the model are consistent with canopy CO2 exchange measurements, although a need exists for further testing of this and other canopy physiology models with independent measurements of canopy mass and energy exchange at the time scale of 1 h or less.Abbreviations LAI leaf area index - NIR near infrared (700–3000 nm) radiation - PAR photosynthetically active (400–700 nm) radiation - PI photosynthetic irradiance (400–700 nm) - PPFD photosynthetic photon flux area density (400–700 nm) - PS I Photosystem I - PS II Photosystem II - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuP2 ribulose-1,5-bisphosphate  相似文献   

17.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

18.
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral, Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII Functional absorption cross-section for PSII - Fo, Fm Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units) - Fv Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless - Fv/Fm Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless - F, Fm Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units) - F/Fm Quantum yield of photochemistry in PSII measured at steady state under ambient light Communicated by R.C. Carpenter  相似文献   

19.
The alterations in structure and function of photosystem II (PS II) during the senescence of primary leaves of wheat seedlings have been compared with the changes induced by ultraviolet-B (UV-B) radiation in the presence or absence of photosynthetically active radiation (PAR). The results indicated that the senescence-induced loss in pigment content, thylakoid membrane integrity and carotenoid-to-chlorophyll (Car-to-Chl) energy transfer efficiency was intensified by exposure to UV-B radiation. Different parameters for the measurement of PS II activity, such as Chl a fluorescence, O2-evolution and thermoluminescence intensity, were altered during senescence and these alterations were furthered by UV-B irradiation. The damage of photosynthetic apparatus by UV-B exposure in the presence of PAR was less than the damage in absence of PAR. The activation of molecular defense mechanisms could be a factor in the alleviation of UV-B damage in the presence of PAR.  相似文献   

20.
Although it is generally assumed that the plastoquinone pool of thylakoid membranes in leaves of higher plants is rapidly oxidized upon darkening, this is often not the case. A multiflash kinetic fluorimeter was used to monitor the redox state of the plastoquinone pool in leaves. It was found that in many species of plants, particularly those using the NAD-malic enzyme C4 system of photosynthesis, the pool actually became more reduced following a light to dark transition. In some Amaranthus species, plastoquinone remained reduced in the dark for several hours. Far red light, which preferentially drives Photosystem I turnover, could effectively oxidize the plastoquinone pool. Plastoquinone was re-reduced in the dark within a few seconds when far red illumination was removed. The underlying mechanism of the dark reduction of the plastoquinone pool is still uncertain but may involve chlororespiratory activity.Abbreviations apparent Fo observed fluorescence yield after dark adaptation - Fm maximum fluorescence when all QA is fully reduced - Fo minimum fluorescence yield when QA is fully oxidized and non-photochemical quenching is fully relaxed - Fs steady state fluorescence yield - PPFD photosynthetic photon flux density - PQ plastoquinone - QA primary quinone acceptor of the Photosystem II reaction center - QB secondary quinone acceptor to the Photosystem II reaction center - F Fm minus Fs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号