首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The generation of reactive oxygen intermediates by microsomes from ethanol-fed rats and pair-fed controls was determined by assaying for NADPH-dependent chemiluminescence. In the absence or presence of added ferric complexes, microsomal light emission was elevated several-fold after chronic ethanol consumption. Iron complexes such as ferric-citrate or ferric-ATP stimulated, while ferric-EDTA, inhibited microsomal chemiluminescence. Freeze-thawing the microsomes to elevate their content of lipid hydroperoxides resulted in large increases in chemiluminescence; under all conditions, the light emission remained several-fold higher with microsomes from the ethanol-fed rats. Chemiluminescence was not sensitive to superoxide dismutase, catalase, or the hydroxyl radical scavenging agent, dimethyl sulfoxide, but was inhibited by antioxidants and by glutathione. Replacing air with a mixture of 50% nitrogen-50% air or 50% carbon monoxide-50% air had no effect on chemiluminescence by microsomes from the pair-fed controls. However, the chemiluminescent response by microsomes from the ethanol-fed rats was inhibited about 50% by the nitrogen mixture, and was further inhibited (about 75% of values found with 100% air, and 50% of values found with 50% nitrogen-50% air) with the carbon monoxide mixture. The sensitivity to carbon monoxide suggests the possibility that the alcohol-inducible cytochrome P-450 isozyme may contribute, in part, to the elevated light emission produced by microsomes from the ethanol-fed rats. The increase in chemiluminescence by microsomes after chronic ethanol consumption appears to reflect an elevated level of lipid hydroperoxides as well as an increased rate of generation of reactive oxygen species.  相似文献   

2.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

3.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

4.
Addition of oxygen to whole cells of Escherichia coli suspended in the presence of the chemiluminescent probe bis-N-methylacridinium nitrate (lucigenin) resulted in a light emission increase of 200% of control. Addition of air to cells showed a chemiluminescent response far less than the response to oxygen. The redox cycling agents paraquat and menadione, which are known to increase intracellular production of O2- and H2O2, were also found to cause a measurable increase in lucigenin chemiluminescence in E. coli cells when added at concentrations of 1 and 0.1 mM, respectively. The oxygen-induced chemiluminescent response was not suppressed by extracellularly added superoxide dismutase or catalase. Further, the lucigenin-dependent chemiluminescent response of aerobically grown E. coli to oxygen was significantly greater than that of cells grown anaerobically. Heat-killed cells showed no increase in chemiluminescence on the addition of either oxygen, paraquat, or menadione. These results show that lucigenin may be used as a chemiluminescent probe to demonstrate continuous intracellular production of reactive oxygen metabolites in E. coli.  相似文献   

5.
The estimated light emission spectrum was determined for a singlet oxygen (1O2)-producing system, NaOCl + H2O2, alone and in the presence of tryptophan and bovine serum albumin. Tryptophan and bovine serum albumin caused a decrease in the red emission of 1O2 and an increase in the amount of shorter wavelength light. This effect was due to chemiluminescence rather than fluorescence. Arachidonic acid caused a similar spectral shift, while guanosine demonstrated a late chemiluminescent reaction of predominantly short wavelength light in the presence of 1O2.  相似文献   

6.
Light-emission of the perfused lung is induced by t-butyl hydroperoxide, giving chemiluminescence yields that oscillate between 800 and 1500 counts/s depending on the site and position of the lung. The response of the perfused lung to infusion with different hydroperoxides gives a pattern similar to that observed with the liver microsomal fraction; ethyl hydroperoxide shows a much higher chemiluminescence yield than the tertiary (t-butyl and cumene)hydroperoxides. Alveolar oedema affected the light-emission of the perfused lung depending on the time at which oedema developed, decreasing light emission on infusion of hydroperoxide in the oedematous lung and increasing it when oedema appeared after the maximal chemiluminescence yield was already achieved. Paraquat, administered in vivo, augmented light-emission by approximately 2-fold. The effect of paraquat was a time-dependent process. Lung chemiluminescence, compared with liver chemiluminescence, needed higher hydroperoxide concentration to induce light-emission.  相似文献   

7.
The relationship between the degradation reaction of cytochrome P-450 and lipid peroxidation was studied utilizing bovine adrenal cortex mitochondria. The two reactions were found to be closely correlated in terms of their response to storage of the mitochondrial preparation, stimulation by Fe2+, inhibition by EDTA and their initiation by cumene hydroperoxide. Both reactions were also found not to be inhibited by catalase, superoxide dismutase, 1,4-diazabicyclo-(2,2,2)-octane and alcohols, indicating that H2O2, superoxide, singlet oxygen and hydroxyl radicals do not participate in these reactions. Yet, diphenylamine proved to be a powerful inhibitor for both reactions, suggesting the involvement of a radical species. Cumene hydroperoxide could induce these two reactions at below 0.1 mM concentrations in the presence of molecular oxygen. The chemiluminescence observed during the Fe2+-mediated lipid peroxidation reaction which was not inhibited by either superoxide dismutase or 1,4-diazabicyclo-(2,2,2)-octane, was biphasic: one was a rapid burst; and the other was a slowly increasing emission. The latter portion of the emission of light coincided with the formation of malondialdehyde. These results indicate that in adrenal cortex mitochondria the degradation of cytochrome P-450 is closely related to lipid peroxidation.  相似文献   

8.
S N Mogel  B A McFadden 《Biochemistry》1990,29(36):8333-8337
Chemiluminescence has been observed during catalysis by Mn2(+)-activated ribulose-bisphosphate carboxylase/oxygenase from spinach. The luminescence is ribulose 1,5-bisphosphate (RuBP) and O2-dependent and is inhibited by 2-carboxyarabinitol 1,5-bisphosphate and high concentrations of bicarbonate; it is therefore ascribed to the RuBP oxygenase activity. The luminescence is inhibited by azide and enhanced in D2O and in the presence of diazabicyclooctane. The emission maximum is between 620 and 660 nm. The initial rate of light emission is second order in enzyme concentration. The data strongly suggest that singlet oxygen is produced during turnover, that the observed chemiluminescence is due to dimol emission of singlet oxygen, and that this provides a basis for a highly sensitive assay for RuBP oxygenase.  相似文献   

9.
Microsomal superoxide anion (O2-) production was detected using the chemiluminigenic probe, bis-N-Methylacridinium nitrate (lucigenin). Superoxide dismutase (SOD) inhibited 55% of the light emission but in the presence of a detergent (Triton X100) SOD inhibited the light emission by 94%. Lucigenin chemiluminescence from rat liver microsomes supplemented with NADPH was found to be selective and sensitive in detecting the O2- production. Treatment of rats with poly IC and LPS resulted in a decrease of the hepatic microsomal cytochrome P450 content by 44% and 37% respectively. The decrease in the cytochrome P450 contents was accompanied by a decrease in LgCl from the hepatic microsomal fractions by 61% for the poly IC and by 51% for the LPS treated rats. This is the first report to demonstrate that decreased P450 in the presence of normal amounts of cytochrome P450(c) reductase produce correspondingly less O2- from the microsomes.  相似文献   

10.
A technique was developed which permitted the release of ATP from synaptosomes by elevated extracellular K+ or by veratridine to be directly and continuously monitored. The released ATP interacted with firefly luciferin and luciferase in the incubation medium to produce light which could be detected by a photomultiplier. The assay system was specific for ATP, in that similar concentrations of adenosine, AMP or ADP did not produce chemiluminescence. Moreover, the maximum peak of light emission correlated linearly with the concentrations of ATP present in the medium, so that semiquantitative estimates of ATP release could be made. Elevating the extracellular K+ concentration produced a graded release of ATP from synaptosomes. Rb+ also released ATP but Na+, Li+ and choline did not. The response to elevated K+ was not blocked by tetrodotoxin (TTX), indicating that this effect was not mediated by the opening of Na+-channels in synaptosomal membranes. Veratridine (50 μM) caused a graded release of ATP which was larger and more prolonged than that caused by elevated K+. The release of ATP by veratridine was blocked by TTX indicating that the opening of Na+-channels was involved. Neither veratridine nor elevated K+ released ATP from microsomal or mitochondrial fractions, showing that the release of ATP probably did not originate from microsomal, vesicular or mitochondrial contaminants of the synaptosomal preparation. Release of ATP by elevated K+ was diminished in a medium lacking CaCl+ or when EGTA was added to chelate Ca2+. In contrast, release by veratridine appeared to be augmented in Ca2+-free media or in the presence of EGTA. The K+-induced release of ATP, which is Ca2+ dependent, closely resembles the exocytotic release of putative neurotransmitters from presynaptic nerve-terminals. On the other hand, the apparent lack of a Ca2+ requirement for veratridine's action suggests that this process could originate from other sites, or involve mechanisms other than conventional neurotransmitter release processes.  相似文献   

11.
Bucillamine (BUC) is used clinically for the treatment of rheumatoid arthritis. Some of the pharmacological action of BUC has been reported as being dependent on the production of reactive oxygen species (ROS). In this paper the reactivity of BUC with superoxide anion radical (O(2) (*-)) generated from potassium superoxide/18-crown-6 ether dissolved in DMSO, hydroxyl radical (HO(*)) produced in the Cu(2+)-H(2)O(2) reaction, peroxyl radical (ROO(*)) from 2,2'-azobis (2-amidino-propane) dichloride decomposition, and singlet oxygen ((1)O(2)) from a mixture of alkaline aqueous H(2)O(2) and acetonitrile, have been investigated. Chemiluminescence, fluorescence, electron paramagnetic resonance (EPR) spin-trapping techniques and the deoxyribose and oxygen radical absorbance capacity towards ROO(*) (ORAC(ROO)) assays were used to elucidate the anti- and pro-oxidative behaviours of BUC towards ROS. The results indicated that BUC efficiently inhibited chemiluminescence from the O(2) (*-)-generating system at relatively high concentrations (0.5-2 mmol/L); however, at lower concentrations (<0.5 mmol/L) the drug enhanced light emission. The behaviour of BUC was correlated with a capacity to decrease the chemiluminescence signal from the Cu(2+)-H(2)O(2) system; scavenging HO(*) was effective only at high concentrations (1-2 mmol/L) of the drug. Bucillamine also prevented deoxyribose degradation induced by HO(*) in a dose-dependent manner, reaching maximal inhibition (24.5%) at a relative high concentration (1.54 mmol/L). Moreover, BUC reacts with ROO(*); the relative ORAC(ROO) was found to be 0.34 micromol/L Trolox equivalents/micromol sample. The drug showed quenching of (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine-N-oxide radical formation from 2,2,6,6-tetramethyl-piperidine (e.g. 90% inhibition was found at 1 mmol/L concentration). The results showed that BUC may directly scavenge ROS or inhibit reactions generating them. However, the drug may have pro-oxidant activity under some reaction conditions.  相似文献   

12.
The Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (CLA), in Hanks' balanced salt solution, emitted a weak luminescence which was not affected by superoxide dismutase or catalase and was not augmented by resting human granulocytes. In contrast, activated granulocytes caused a dramatic increase in the luminescence of CLA. The light emission by CLA in the presence of activated granulocytes was inhibited by superoxide dismutase, but not by catalase or benzoate. Azide at 0.5 mM did not inhibit light emission significantly. These results indicate that O2-, rather than H2O2, HO., singlet oxygen, or HOCl, was the agent responsible for eliciting the chemiluminescence of CLA. Moreover, the intensity of light emission by CLA correlated with the rate of production of O2- either by activated neutrophils or by the xanthine oxidase reaction.  相似文献   

13.
Horseradish peroxidase (HRP) (EC 1.11.1.7) catalyzes the oxidation of reduced glutathione. This reaction is accompanied by light emission, which is attributed to the generation of singlet oxygen. The chemiluminescence is directly related to thiyl radical formation, as deduced from the correlation between the time course of HRP-compound II formation and light emission in the presence of different amounts of H2O2. Superoxide dismutase has an inhibitory effect on the chemiluminescence without affecting the HRP-compound II formation. This indicates the direct involvement of superoxide radicals in the production of photoemissive species. Replacement of HRP by hemin is also accompanied by chemiluminescence.  相似文献   

14.
In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.  相似文献   

15.
The increase in light emission of hydroperoxide-supplemented cytochrome c observed on addition of lipid vesicles was related to the degree of unsaturation of the fatty acids of the phospholipids: dipalmitoyl phosphatidylcholine was without effect, whereas dioleoyl phosphatidylcholine and soya-bean phosphatidylcholine enhanced chemiluminescence 2- and 3-fold respectively. Effects on light-emission were similar to those on O2 uptake. The chemiluminescence of the present system was sensitive to cyanide and to the radical trap 2,5-di-t-butylquinol, indicating a catlytic activity of cytochrome c and the presence of free-radical species respectively. Lipid-vesicle enhanced chemiluminescence showed different kinetic behaviours, apparently depending on unsaturation: three phases are described for soya-bean phosphatidylcholine, whereas only one phase was present in mixtures containing dipalmitoyl and dioleoyl phospholipids. Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide showed similar kinetic patterns with H2O2 and primary (ethyl) and tertiary (t-butyl and cumene) hydroperoxides. Participation of singlet molecular oxygen, mainly on the phase III of chemiluminescence, is suggested by the increase of light-emission by 1,4-diazabicyclo[2.2.2]-octane as well as by data from spectral analysis.  相似文献   

16.
Luminol-dependent chemiluminescence of PMA-stimulated human neutrophils decrease more than by 50% in the presence of physiological concentrations of carnosine (20 mM). This inhibition is the result of carnosine ability to scavenge hypochlorite (OCl-), since carnosine exerts a similar effect on chemiluminescence produced by myeloperoxidase-H2O2-Cl- and OCl(-)-H2O2 systems. The previously undocumented property of this dipeptide to scavenge active oxygen species requires further experiments.  相似文献   

17.
Copper in the presence of excess 1,10-phenanthroline, a reducing agent, and H2O2 causes DNA base damage as well as strand breakage. We have reported in previous work that a strong chemiluminescence was followed by DNA base damage in this system, which is characteristic of guanine. In the present work, the mechanism of the chemiluminescence was studied. Results show that the luminescence was inhibited by all three classes of reactive oxygen species (*OH, O2-, (1)O2) scavengers to different degrees. Singlet oxygen scavengers showed the most powerful inhibition while the other two classes of scavengers were relatively weaker. The emission intensity in D2O was 3-fold that in H2O. Comparing the effect of scavengers on the luminescence of DNA with that of dGMP, the ratio of inhibition was similar. On the other hand, DNA breakage analysis showed that inhibition by the singlet oxygen scavenger NaN3 of strand breakage was strong and comparable to that of the scavengers of the two oxygen radicals. The results suggest that singlet oxygen may be a major factor for the chemiluminescence of guanine, while DNA strand breakage may be caused by many active species.  相似文献   

18.
A simple chemical system consisting of FeSO4 and H2O2 (Fenton's reagent) was shown to emit light (chemiluminescence). The addition of tryptophan to the reaction markedly enhanced light production. Very little chemiluminescence was observed when H2O2 was omitted from the reaction and when ferric, instead of ferrous, ions were used. Hydroxyl radical (OH.) and singlet oxygen (1 deltagO2) quenchers suppressed chemiluminescence of the FeSO4 + tryptophan + H2O2 system; and, deuterium oxide (2H2O) enhanced chemiluminescence of both FeSO4 reactions. These observations suggest that a radical chain reaction involving both OH. and 1 deltag O2 is responsible for the chemiluminescent reactions. Six iron-containing proteins, some of which are located within granulocytes, all emitted light in the presence of H2O2. Since iron and H2O2 are present in metabolically stimulated granulocytes, it is likely that chemiluminescent reactions similar to the ones demonstrated in this study account for part of the chemiluminescence of activated granulocytes.  相似文献   

19.
A simplified system, consisting of NADPH, Fe3+-ADP, EDTA, liposomes, NADPH-cytochrome c reductase and Tris - HCl buffer (pH 6.8), has been employed in studies of the generation of singlet oxygen in NADPH-dependent microsomal lipid peroxidation. The light emitted by the system involves 1deltag type molecular oxygen identifiable by its characteristic emission spectrum and its behavior with beta-carotene. The generation of another excited species (a compound in the triplet state) could be demonstrated in this system by changes of light intensity and emission spectra which arise from photosensitizer (9,10-dibromoanthracene sulfonate, eosin, Rose-Bengal)-mediated energy transfers. Chemiluminescence in the visible region was markedly quenched by various radical trappers and by an inhibitor of NADPH-cytochrome c reductase, but not by superoxide dismutase. During the early stage of lipid peroxidation, the intensity of chemiluminescence was proportional to the square of the concentration of lipid peroxide. These characteristics suggest that singlet oxygen and a compound in the triplet state (probably a carbonyl compound) are generated by a self-reaction of lipid peroxy radicals.  相似文献   

20.
Chlorination of proteins by the myeloperoxidase-H2O2-Cl- system results in light emission. Out of all amino acids present in proteins only tryptophan delivers light during chlorination. Chlorination of tryptophan by the myeloperoxidase-H2O2-Cl- system, as well as by HOCl or taurine chloramine is associated with chemiluminescence. pH dependence and time pattern of light emission is similar for chlorination of tryptophan by the myeloperoxidase system and taurine, but appears to be different for chlorination by HOCl. Aerobic conditions are necessary for chemiluminescence of chlorinated tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号