首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of low temperatures down to approximately 5 degrees C on postcapillary resistance (Rv) and isogravimetric capillary pressure (Pci) in the isolated constant-flow-perfused cat hindlimb to see if a low-temperature-induced increase in Rv and decrease in Pci could lead to an increase in filtration pressure and edema formation. A low-viscosity perfusate (20% cat plasma, 80% albumin-electrolyte solution; viscosity approximately 1 cP) was used. Isoproterenol (10(-7) M) was added to vasodilate the limb and achieve normal microvascular permeability. Rv and Pci were estimated from the slope and zero-flow intercept, respectively, of the straight-line fit to the isogravimetric venous pressure vs. flow data. Rv and Pci were determined in each experiment at an initial 37 degrees C control, at a lowered temperature (30, 23, 15, or 5-10 degrees C), and then at 37 degrees C again. The ratio of Rv at the low temperatures relative to the initial 37 degrees C control increased almost linearly as temperature was reduced. The increase was 3.4 times control at the lowest temperature. Pci decreased significantly from control only in the lowest temperature group where the change was -5.4 mmHg. Analysis of our data with the low-viscosity perfusate shows that the limb can become edematous if temperature is lowered to approximately 5 degrees C unless venous pressure (Pv) is lowered to venous collapse and flow reduced to less than approximately 20 ml.min-1.100g-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The lack of a satisfactory method for long-term preservation of hearts during transport limits the source of human hearts for transplant to the geographic vicinity of the transplant center. Experimentally, reduction of myocardial oxygen requirements with hypothermia and cardioplegia prolong storage time to 48 h, but always with some evidence of myocardial damage. In this study, the combination of hypothermia with a procedure known to increase oxygen tension in cardiac muscle, gas perfusion, preserved contractile activity in guinea pig hearts for 24 h and did not cause edema. Cardioplegia or gas perfusion at temperatures below 10 degrees C or above 20 degrees C resulted in failure of hearts to contract upon rewarming. Contracture, dehydration, elevation of tissue calcium, reduced perfusate flow, and elevated creatine kinase levels occurred if liquid reperfusion was begun at 15 degrees C but not 25 degrees C. The results suggest that under the appropriate conditions, hypothermic gas perfusion is a potentially useful means of extending storage time of hearts for transplant.  相似文献   

3.
D E Pegg  C J Green 《Cryobiology》1973,10(1):56-66
Rabbit kidneys were preserved by hypothermic perfusion at 5 °C using a perfusate containing an extracellular balance of ions, dextran and bovine serum albumin. Two groups were studied: in one, the pressure was kept constant at 40 mm Hg, while in the other the flow was maintained at 13 ml/min. The mean flows in the two groups were similar but the resistance of the kidneys perfused under constant-flow conditions was lower and more stable: the vascular resistance in the constant-pressure group showed considerable fluctuations throughout the 24 hr perfusion period. The function of the kidneys was assessed by autotransplantation with immediate contralateral nephrectomy. The constant-pressure group functioned better in all respects: the proportion of animals surviving was higher, the postoperative blood urea and creatinine levels were lower, and histological examination of the kidneys revealed less damage. It is concluded that constantpressure perfusion should be preferred to constant-flow perfusion. These experiments confirmed that there is a correlation between potassium release into the perfusate and subsequent function, and an unexpected inverse correlation was observed between the perfusate glucose level and subsequent function. Possible reasons for this are discussed.  相似文献   

4.
Survival following 3 hr of total circulatory arrest under profound hypothermic conditions was explored in 19 adult mongrel dogs. Thermoregulatory management included combined surface/perfusion hypothermia and azeotrope anesthesia in 95% O2/5% CO2. All animals were resuscitated and survived for at least 12 hr. During the last seven trials (Group II) the following principles were applied: uniform whole-body cooling where differences between rectal, esophageal, and pharyngeal temperatures averaged less than 1 degree C, induction of circulatory arrest at approximately 3 degrees C, constant lung inflation (10-12 cm H2O between 20 degrees C cooling and 20 degrees C rewarming, including the 3-hr arrest period) and ventilation assistance with positive end-expiratory pressure (4 cm H2O) after 20 degrees C rewarming, intraoperative maintenance of colloid osmotic pressure (COP) above 11 mm Hg, replacement of the cooling perfusate with a colloid-rich rewarming prime (COP = 15 mm Hg) and restoration of hemostasis with fresh whole blood transfusions. The application of these principles resulted in the long-term survival of five animals with four survivors displaying no clinically detectable neurological abnormalities. However, two animals developed optic impairment and one animal died from intusseption on the fourth postoperative day. Despite the improved results, it should also be noted that during pilot (Group I) studies (from which the aforementioned principles were derived) fatalities from complications attributed to systemic edema, central nervous system, or pulmonary or coagulation dysfunctions occurred in 9 out of 12 trials. We conclude that whole body protection following 3 hr of total circulatory arrest at a uniform temperature less than 5 degrees C can be successfully accomplished.  相似文献   

5.
6.
It is known that cellular edema and functional impairment develop during anaerobic cold storage of organs. The extent of both is related to the storage time and the composition of the preservation solution used. We studied hypothermia-induced cell swelling and its effect on liver function after cold storage preservation with either Eurocollins (EC), a number of modified EC solutions in which glucose was replaced by various concentrations of raffinose, or UW solution. After 24 h storage, tissue swelling as determined by total tissue water (TTW) in rat liver tissue slices was most pronounced in slices incubated in Eurocollins, whereas the TTW was only moderately increased in slices stored in modified Eurocollins containing 90 to 120 mM raffinose. In contrast, slices incubated in UW solution had a TTW equal to normal rat liver tissue. Furthermore, intact rabbit livers preserved with Eurocollins had an increase in the whole organ weight, while there was no weight change after preservation with the modified solution containing 120 mM raffinose (M120). In contrast, a pronounced weight loss was observed after preservation with UW solution. After cold storage, the livers were reperfused for 2 h at 38 degrees C in an isolated perfusion circuit (IPL) with an acellular perfusate. Bile flow was significantly greater in livers preserved in M120 than in those preserved with the conventional Eurocollins. However, the bile flow in the livers stored in M120 was inferior to that in the livers preserved with UW solution, which in turn was equal to that in control livers. The release of alanine-aspartate-aminotransferase into the perfusate was higher in livers preserved with Eurocollins, with or without modification, than in the livers preserved with UW solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

8.
We have utilized the in situ perfused rat liver under nonrecirculating conditions to examine the effect of temperature on the metabolism and biliary secretion of [125I]-asialoorosomucid (ASOR). In this manner we were able to follow the fate of a single round of internalized ligand. In control livers perfused at 37 degrees C, approximately 50% of [125I]-ASOR injected into the portal vein was extracted on first pass. Five minutes after the injection, radioactivity, which had been extracted initially, began to appear in the hepatic venous effluent. Within 25 min, 50% of the initially extracted radioactivity was released into the perfusion medium; the bulk of this radioactivity (greater than 95%) was soluble in trichloroacetic acid. In livers perfused at temperatures slightly less than 37 degrees C (30-35 degrees C), first-pass extraction of [125I]-ASOR was similar to that observed at 37 degrees C. However, a severalfold decrease in the rate of release of radioactivity from the liver into the perfusion medium was noted at the lower perfusion temperatures; whereas greater than 50% of the initially extracted radioactivity was released within 30 min from livers perfused at 37 degrees C, only 5% was released at 30 degrees C. At the lower perfusion temperature, a larger proportion of the released radioactivity was acid precipitable (24% vs. 5%). Some radioactivity also was recovered in the bile; of the total amount of radioactivity released from the liver in 30 min at 37 degrees C, approximately 5% was directed into the bile. At lower temperatures of perfusion, a greater fraction of the radioactivity that was released from the liver was directed into the bile (20% at 30 degrees C vs. 5% at 37 degrees C). The data imply that the endosomal pathway to the lysosome is highly sensitive to slight reductions in temperature while the transcytotic route into bile is less sensitive. Lower temperatures might prolong the residence time of ASOR in the prelysosomal endosomal compartments, and thereby increase the likelihood that undegraded ligand will be returned to the blood or be missorted into bile.  相似文献   

9.
The hamster window chamber model was used to study systemic and microvascular hemodynamic responses to extreme hemodilution with low- and high-viscosity plasma expanders (LVPE and HVPE, respectively) to determine whether plasma viscosity is a factor in homeostasis during extreme anemic conditions. Moderated hemodilution was induced by two isovolemic steps performed with 6% 70-kDa dextran until systemic hematocrit (Hct) was reduced to 18% (level 2). In a third isovolemic step, hemodilution with LVPE (6% 70-kDa dextran, 2.8 cP) or HVPE (6% 500-kDa dextran, 5.9 cP) reduced Hct to 11%. Systemic parameters, cardiac output (CO), organ flow distribution, microhemodynamics, and functional capillary density, were measured after each exchange dilution. Fluorescent-labeled microspheres were used to measure organ (brain, heart, kidney, liver, lung, and spleen) and window chamber blood flow. Final blood and plasma viscosities after the entire protocol were 2.1 and 1.4 cP, respectively, for LVPE and 2.8 and 2.2 cP, respectively, for HVPE (baseline = 4.2 and 1.2 cP, respectively). HVPE significantly elevated mean arterial pressure and CO compared with LVPE but did not increase vascular resistance. Functional capillary density was significantly higher for HVPE [87% (SD 7) of baseline] than for LVPE [42% (SD 11) of baseline]. Increases in mean arterial blood pressure, CO, and shear stress-mediated factors could be responsible for maintaining organ and microvascular perfusion after exchange with HVPE compared with LVPE. Microhemodynamic data corresponded to microsphere-measured perfusion data in vital organs.  相似文献   

10.
11.
A rapid cold hardening response was studied in diapause and non-diapause females of the predatory mite Euseius finlandicus. When laboratory reared diapause and non-diapause females were transferred and maintained from the rearing temperature of 20 degrees C for 2 h to -11.5 degrees C and -10 degrees C, 10 to 20% survived respectively. However, conditioning of diapause females for 4 h at a range of temperatures from 0 to 10 degrees C before their exposure for 2 h to -11.5 degrees C, increased survival to approximately 90%. Similarly, conditioning of non-diapause females for 4 h at 5 degrees C before their exposure for 2 h to -10 degrees C increased survival to 90%. A similar rapid cold hardening response in both diapause and non-diapause females was also induced through gradual cooling of the mites, at a rate of approximately 0.4 degrees C per min. The rapid increase in cold tolerance after prior conditioning of the mites to low temperatures, was rapidly lost when they returned to a higher temperature of 20 degrees C. Rapid cold hardening extended the survival time of diapause and non-diapause females at sub-zero temperatures. The cost of rapid cold hardening in reproductive potential after diapause termination was negligible. In non-diapause females, however, the increase in cold tolerance gained through gradual cooling could not prevent cold shock injuries, as both fecundity and survival were reduced.  相似文献   

12.
Enzymes isolated from organisms native to cold environments generally exhibit higher catalytic efficiency at low temperatures and greater thermosensitivity than their mesophilic counterparts. In an effort to understand the evolutionary process and the molecular basis of cold adaptation, we have used directed evolution to convert a mesophilic subtilisin-like protease from Bacillus sphaericus, SSII, into its psychrophilic counterpart. A single round of random mutagenesis followed by recombination of improved variants yielded a mutant, P3C9, with a catalytic rate constant (k(cat)) at 10 degrees C 6.6 times and a catalytic efficiency (k(cat)/K(M)) 9.6 times that of wild type. Its half-life at 70 degrees C is 3.3 times less than wild type. Although there is a trend toward decreasing stability during the progression from mesophile to psychrophile, there is not a strict correlation between decreasing stability and increasing low temperature activity. A first generation mutant with a >2-fold increase in k(cat) is actually more stable than wild type. This suggests that the ultimate decrease in stability may be due to random drift rather than a physical incompatibility between low temperature activity and high temperature stability. SSII shares 77. 4% identity with the naturally psychrophilic protease subtilisin S41. Although SSII and S41 differ at 85 positions, four amino acid substitutions were sufficient to generate an SSII whose low temperature activity is greater than that of S41. That none of the four are found in S41 indicates that there are multiple routes to cold adaptation.  相似文献   

13.
The heat shock response in Escherichia coli depends on a transient increase in the intracellular level of sigma(32) that results from both increased synthesis and transient stabilization of normally unstable sigma(32). Although the membrane-bound ATP-dependent protease FtsH (HflB) plays an important role in degradation of sigma(32), our previous results suggested that several cytosolic ATP-dependent proteases including HslVU (ClpQY) are also involved in sigma(32) degradation (Kanemori, M., Nishihara, K., Yanagi, H., and Yura, T. (1997) J. Bacteriol. 179, 7219-7225). We now report on the ATP-dependent proteolysis of sigma(32) by purified HslVU protease and its unusual dependence on high temperature: sigma(32) was rapidly degraded at 44 degrees C, but with much slower rates ( approximately 15-fold) at 35 degrees C. FtsH-dependent degradation of sigma(32) also gave similar results. In agreement with these results in vitro, the turnover of sigma(32) in normally growing cells at high temperature (42 degrees C) was much faster than at low temperature (30 degrees C). Taken together with other evidence, these results suggest that the sigma(32) level during normal growth is primarily determined by the stability (susceptibility to proteases) and synthesis rate of sigma(32) set by ambient temperature, whereas fine adjustment such as transient stabilization of sigma(32) observed upon heat shock is brought about through monitoring changes in the cellular state of protein folding.  相似文献   

14.
The effect of severe cold (5 to 10 degrees C) on adrenergic neurotransmission was compared in the isolated cutaneous (saphenous) artery and vein of the dog. The vein contracted to sympathetic nerve stimulation at temperatures as low as 10 degrees C; higher temperatures were needed for the artery to contract. Both blood vessels contracted to exogenous norepinephrine at temperatures as low as 5 degrees C. However, the contractile response to exogenous norepinephrine was less in the saphenous artery, and contractions to high K+ solution were depressed by cooling more in the artery than in the vein. During electrical stimulation of the sympathetic nerves in saphenous arteries and veins previously incubated with labeled norepinephrine, progressive cooling from 37 to 5 degrees C caused a sharp decline in overflow of [3H]norepinephrine and its metabolites. However, overflow of labeled norepinephrine in both blood vessels continued at very cold temperatures. Thus the inability of the saphenous artery to contract to sympathetic nerve stimulation at 10 degrees C can be explained by a greater sensitivity of the arterial smooth muscle to the direct depressant effect of cold, rather than to a differential release or metabolism or norepinephrine in the arterial wall or a loss of responsiveness to norepinephrine at very cold temperatures.  相似文献   

15.
Two psychrotrophic strains of Rhizobium, DDSS69, a non-cold acclimated strain, and ATR1, a cold acclimated strain, were subjected to cold stress. A 4-fold increase in the specific activity of lactate dehydrogenase (LDH) was characteristic for cold stressed cells of DDSS69, whereas ATR1 showed a higher LDH activity in general, which increased 1.5-fold under cold stress. Cold sensitive mutants of DDSS69 which could not grow below 15 degrees C, in contrast to the wild type which could grow at 5 degrees C, were isolated using Tn5-tagged mutagenesis. These mutants showed a 40% lower LDH activity than the wild type grown at 5 degrees C that was comparable to the wild type grown at 15 degrees C. High specific activity of succinic dehydrogenase (SDH) at 28 degrees C in both strains and mutants indicated that aerobic respiration via the citrate cycle is the normal mode of saccharide utilization. Shifts to lower temperatures decreased the specific activity of SDH. However, alcohol dehydrogenase (ADH) activity remained very low in both the strains and the mutants at low temperatures indicating that a shift from aerobic saccharide metabolism to anaerobic one under cold stress involves lactate glycolysis rather than alcohol fermentation. There was an increase in membrane-bound ATPase activity under cold stress which is correlated to higher LDH activity. These data show that, in psychrotrophic Rhizobium strains, cold stress induces a switchover of respiratory metabolism from aerobic to anaerobic pathway, especially lactate glycolysis.  相似文献   

16.
To assess the presence and magnitude of the effect of skin blood flow on finger skin cooling on contact with cold objects against the background of circulatory disorder risks in occupational exposures, this study investigates the effect of zero vs. close-to-maximal hand blood flow on short-term (< or =180 s) skin contact cooling response at a contact pressure that allows capillary perfusion of the distal pulp of the fingertip. Six male volunteers touched a block of aluminium with a finger contact force of 0.5 N at a temperature of -2 degrees C under a vasodilated and an occluded condition. Before both conditions, participants were required to exercise in a hot room for > or = 30 min for cutaneous vasodilation to occur (increase in rectal temperature of 1 degrees C). Under the vasodilated condition, forearm blood flow rate rose as high as 16.8 ml.100 ml(-1).min(-1). Under the occluded condition, the arm was exsanguinated, after which a blood pressure cuff was secured on the wrist inducing arterial occlusion. Contact temperature of the finger pad during the subsequent cold contact exposure was measured. No significant difference was found between the starting skin temperatures for the two blood flow conditions, but a distinct difference in shape of the contact cooling curve was apparent between the two blood flow conditions, with Newtonian cooling observed under the occluded condition, whereas a rewarming of the finger skin toward the end of the exposure occurred for the vasodilated condition. Blood flow was found to significantly increase contact temperature from 40 s onward (P < 0.01). It is concluded that, at a finger contact force compatible with capillary perfusion of the finger pad ( approximately 0.5 N), circulating blood provides a heat input source that significantly affects finger skin contact cooling during a vasodilated state.  相似文献   

17.
M Krueger  F Thom 《Biophysical journal》1997,73(5):2653-2666
High-frequency electric fields can be used to induce deformation of red blood cells. In the temperature domain T = 0 degrees to -15 degrees C (supercooled suspension) and for 25 degrees C this paper examines for human erythrocytes (discocytes, young cell population suspended in a low ionic strength solution with conductivity sigma(25 degrees) = 154 microS/cm) in a sinusoidal electric field (nu = 1 MHz, E0 = 0-18 kV/cm) the following properties and effects as a function of field strength and temperature: 1) viscoelastic response, 2) (shear) deformation (steady-state value obtained from the viscoelastic response time), 3) stability (by experimentally observed breakdown of cell polarization and hemolysis), 4) electrical membrane breakdown and field-induced hemolysis (theoretical calculations for ellipsoidal particles), and 5) mechanical hemolysis. The items 2-4 were also examined for the frequency nu = 100 kHz and for a nonionic solution of very low conductivity (sigma(25 degrees) = 10 microS/cm) to support our interpretations of the results for 1 MHz. Below 0 degrees C with decreasing temperature the viscoelastic response time tau(res)(T) for the cells to reach steady-state deformation values d(infinity,E) increases and the deformation d(infinity,E)(T) decreases strongly. Both effects are especially high for low field strengths. The longest response time of approximately 30 s was obtained for -15 degrees C and small deformations. For 1 MHz the cells can be highly elongated up to 2.3 times their initial diameter a0 for 25 degrees and 0 degrees C, 2.1a0 for -10 degrees C and still 1.95a0 for -15 degrees C. For T > or = 0 degrees C the deformation is limited by hemolysis of the cells, which sets in for E0(lysis)(25 degrees) approximately 8 kV/cm and E0(lysis)(0 degrees) approximately 14 kV/cm. These values are approximately three times higher than the corresponding calculated critical field strengths for electrically induced pore formation. Nevertheless, the observed depolarization and hemolysis of the cells is provoked by electrical membrane breakdown rather than by mechanical forces due to the high deformation. For the nonionic solution, where no electrical breakdown is expected in the whole range for E0, the cells can indeed be deformed to even higher values with a low hemolytic rate. Below 0 degrees C we observe no hemolysis at all, not even for the frequency 100 kHz, where the cells hemolyze at 25 degrees C for the much lower field strength E0(lysis) approximately 2.5 kV/cm. Obviously, pore formation and growth are weak for subzero temperatures.  相似文献   

18.
The aim of the study was to characterize the effects of induced moderate hypothermia on splanchnic blood flow, with particular reference to that of the pancreas and the islets of Langerhans. We also investigated how interference with the autonomic nervous system at different levels influenced the blood perfusion during hypothermia. For this purpose, hypothermia (body temperature of 28 degrees C) was induced by external cooling, whereas normothermic (37.5 degrees C) anesthetized Sprague-Dawley rats were used as controls. Some rats were pretreated with either propranolol, yohimbine, atropine, hexamethonium, or a bilateral abdominal vagotomy. Our findings suggest that moderate hypothermia elicits complex, organ-specific circulatory changes, with increased perfusion noted in the pylorus, as well as the whole pancreas and the pancreatic islets. The pancreatic islets maintain their high blood perfusion through mechanisms involving both sympathetic and parasympathetic mediators, whereas the increased pyloric blood flow is mediated through parasympathetic mechanisms. Renal blood flow was decreased, and this can be prevented by ganglionic blockade and is also influenced by beta-adrenoceptors.  相似文献   

19.
Isocitrate lyase (ICL) from Colwellia psychrerythraea, a psychrophilic bacterium, was purified and characterized. The subunit molecular mass was 64 kDa, which is larger than that of other bacterial ICLs. The optimal temperature for its activity was 25 degrees C, the value of K(m) for the substrate ( DL-isocitrate) was minimum at 15 degrees C, and the catalytic efficiency ( k(cat)/ K(m)) value was maximum at 20 degrees C. Furthermore, the enzyme was remarkably thermolabile and completely inactivated by incubation for 2 min at 30 degrees C. These features indicate that ICL from this bacterium is a typical cold-adapted enzyme. A partial amino acid sequence of the C. psychrerythraea ICL was very similar to that of the closely related psychrophile Colwellia maris. Expression of the gene encoding the C. psychrerythraea ICL was found to be induced by low temperatures and by acetate in the medium. The cold adaptation of the catalytic properties of ICL and the stimulated expression of its gene at low temperatures strongly suggest that this enzyme is important for the growth of this bacterium in a cold environment.  相似文献   

20.
Myocardial mean myoglobin oxygen saturation was determined spectroscopically from isolated guinea pig hearts perfused with red blood cells during increasing hypoxia. These experiments were undertaken to compare intracellular myoglobin oxygen saturation in isolated hearts perfused with a modest concentration of red blood cells (5% hematocrit) with intracellular myoglobin saturation previously reported from traditional buffer-perfused hearts. Studies were performed at 37 degrees C with hearts paced at 240 beats/min and a constant perfusion pressure of 80 cmH2O. It was found that during perfusion with a hematocrit of 5%, baseline mean myoglobin saturation was 93% compared with 72% during buffer perfusion. Mean myoglobin saturation, ventricular function, and oxygen consumption remained fairly constant for arterial perfusate oxygen tensions above 100 mmHg and then decreased precipitously below 100 mmHg. In contrast, mean myoglobin saturation, ventricular function, and oxygen consumption began to decrease even at high oxygen tension with buffer perfusion. The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion. These results suggest that caution should be used in extrapolating intracellular oxygen dynamics from buffer-perfused to blood-perfused hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号