首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Group II phospholipase A2 (PLA2) is an acute-phase protein and an important component of the host defense against bacteria. In this study we investigated the distribution of PLA2 protein by immunohistochemistry and the distribution of mRNA of PLA2 by Northern blotting and in situ hybridization in rat tissues. PLA2 protein was localized in the Paneth cells of the intestinal mucosa, chondrocytes and the matrix of cartilage, and megakaryocytes in the spleen. By Northern blotting, mRNA of PLA2 was found in the gastrointestinal tract, lung, heart, and spleen. By in situ hybridization, PLA2 mRNA was localized in the Paneth cells of the small intestinal mucosa but in no other cell types. Our results show specific distribution of PLA2 in a limited number of cell types in rat tissues. The reagents developed in this study (the anti-rat PLA2 antibody and probes for Northern blotting and in situ hybridization of mRNA of rat PLA2) will provide useful tools for future studies concerning the role of PLA2 in various experimental disease models.  相似文献   

2.
Cytosolic phospholipase A2 (cPLA2) is an interesting protein involved in inflammatory processes and various diseases. Its catalytic mechanism as well as its substrate specificity for arachidonyl phospholipids is not typical for other phospolipases. Furthermore, a lid structure, which ensures a hydrophilic surface of the protein without any substrate bound and the movement of this flexible loop to make the hydrophobic active site accessible, is of high interest. Therefore, the focus of this work was to determine the binding mode of cPLA2 with various substrates, such as arachidonic acid, a synthetic inhibitor, a saturated phospholipid, and most importantly an arachidonyl phospholipid. To understand the selectivity of the protein toward the arachidonyl phospholipid and the interaction in a protein–ligand complex, molecular dynamics simulations were performed using the GROMOS suite of simulation programs. The simulations provide insight into the protein and showed that selective binding of arachidonyl phospholipids is because of the shape of the sn‐2 tail. The amino acids Asn555 and Ala578 are involved in the strongest interactions observed in the protein–ligand complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The content of mRNA for a pancreatic-type phospholipase A2 present in rat gastric mucosa was much greater than that in pancreas. In lung the mRNA for this pancreatic-type phospholipase A2 was also detected, but less than in pancreas. Nucleotide sequence analysis showed that these pancreatic-type phospholipase A2 cDNAs derived from rat gastric mucosa and lung were completely identical to that from rat pancreas (Ohara et al. (1986) J. Biochem. 99, 733-739). This demonstrates that the pancreatic-type phospholipase A2 present in gastric mucosa and lung does not originate from pancreas.  相似文献   

5.
Summary The presence and distribution of types I, III, IV and V collagens within open lesions in the rat cerebrum have been demonstrated by immunofluorescent techniques. In the adult animal, types I and III collagens can be identified in the cicatrix from eight days onwards. Types IV and V collagens occur in the basement membrane of the glia limitans formed between the neuropile and the cicatrix and in the basement membranes of the blood vessels. In neonatal animals, less than eight days old at operation and allowed to recover for eight days, no type I or III collagens occur in the lesion and no types IV and V are present along the edge of the neuropile, because a glia limitans is not formed. In animals operated on when eight days old, the adult response is found in the cortex only, but when 16 days old the full adult response occurs in all parts of the lesion.  相似文献   

6.
The three known human Group IV phospholipase A2 (PLA2) paralogs, Group IVA, IVB and IVC, were overexpressed in Sf9 insect cells using the baculovirus expression system. An endogenous, calcium-independent PLA2 activity was identified in the insect cell lysates, which can be inhibited by bromoenol lactone (BEL). The Group IV PLA2 enzymes were characterized in overexpressing insect cell lysates in the presence of BEL, enabling their differentiation from the endogenous PLA2 activity. Group IVC PLA2 was found to have significant lysophospholipase activity, while Group IVB PLA2 did not. Of the three paralogs, only the Group IVA PLA2 shows enhanced activity in the presence of PIP2, which enables its differential detection in cell homogenates. RT-PCR was used to demonstrate the presence of all three enzymes in human U937 and human WISH cells, while only Group IVA and Group IVB PLA2 were detected in murine P388D1 cells and human astrocytes at the mRNA level.  相似文献   

7.
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.  相似文献   

8.
Melittin and phospholipase A2-activating protein (PLAP) are known as efficient activators of secretory phospholipase A2(sPLA2) types I, II, and III when phospholipid liposomes are used as substrate. The present study demonstrates that both peptides can either inhibit or activate sPLA2 depending on the peptide/phospholipid ratio when erythrocyte membranes serve as a biologically relevant substrate. Low concentrations of melittin and PLAP were observed to inhibit sPLA2-triggered release of fatty acids from erythrocyte membranes. The inhibition was reversed at melittin concentrations above 1 microM. PLAP-induced inhibition of sPLA2 persisted steadily throughout the used concentration range (0-150 nM). The two peptides induced a dose-dependent activation of sPLA2 at low concentrations, followed by inhibition when model membranes were used as substrate. This opposite modulatory effect on biological membranes and model membranes is discussed with respect to different mechanisms the interaction of the regulatory peptides with the enzyme molecules and the substrate vesicles.  相似文献   

9.
Cellular expression of cytosolic phospholipase A2 (cPLA2) was investigated in the rat ovary in different endocrine states. Its mRNA expression was detected by RT-PCR. The immunohistochemistry identified an intense signal for cPLA2 in oocytes. Granulosa and thecal cells in growing follicles were negative, but turned positive during the periovulatory period, whereas those in atretic follicles were highly immunoreactive. The immunoreactive signal was modest in newly formed corpora lutea (CL) but intensified in functionally and morphologically regressing CL. These results show a broad but specific distribution of cPLA2 in ovarian cell types, and suggest its role in ovulation, CL regulation and apoptotic processes.  相似文献   

10.
Types IIA and V secretory phospholipase A2 (sPLA2) are structurally related to each other and their genes are tightly linked to the same chromosome locus. An emerging body of evidence suggests that sPLA2-IIA plays an augmentative role in long-term prostaglandin (PG) generation in cells activated by proinflammatory stimuli; however, the mechanism underlying the functional regulation of sPLA2-V remains largely unknown. Here we show that sPLA2-V is more widely expressed than sPLA2-IIA in the mouse, in which its expression is elevated by proinflammatory stimuli such as lipopolysaccharide. In contrast, proinflammatory stimuli induced sPLA2-IIA in marked preference to sPLA2-V in the rat. Cotransfection of sPLA2-V with cyclooxygenase (COX)-2, but not with COX-1, into human embryonic kidney 293 cells dramatically increased the interleukin-1-dependent PGE2 generation occurring over a 24 h of culture period. Rat mastocytoma RBL-2H3 cells overexpressing sPLA2-V exhibited increased IgE-dependent PGD2 generation and accelerated beta-hexosaminidase exocytosis. These results suggest that sPLA2-V acts as a regulator of inflammation-associated cellular responses. This possible compensation of sPLA2-V for sPLA2-IIA in many, if not all, tissues may also explain why some mouse strains with natural disruption of the sPLA2-IIA gene exhibit few abnormalities during their life-spans.  相似文献   

11.
12.
T Nakano  O Ohara  H Teraoka  H Arita 《FEBS letters》1990,261(1):171-174
Two potent inflammatory mediators, interleukin 1 (IL-1) and tumor necrosis factor (TNF) as well as lipopolysaccharide (LPS) increased group II phospholipase A2 (PLA2) mRNA levels, which resulted in enhanced secretion of the PLA2 enzyme from rat smooth muscle cells. cAMP-elevating agents also stimulated the release of PLA2 and increased the mRNA, but IL-1, TNF and LPS did not affect cAMP levels. Furthermore, the effects of TNF and cAMP-elevating agents were not additive but synergistic. Therefore, we concluded that the level of rat group II PLA2 mRNA is controlled at least by two distinct mechanisms, one involves cAMP and the other is mediated by TNF, IL-1 and LPS. This study also suggests important roles of group II PLA2 in pathogenesis of vascular inflammation.  相似文献   

13.
As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase A2 (cPLA2), but neither secretory PLA2 nor a Ca2+ -dependent PLA2. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with Ki = 86.25 microM for the cPLA2 purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a Ca2+- ionophore A23187-stimulated MDCK cells. In the AA release experiment, IC50 of D609 was approximately 375 microM, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of cPLA2.  相似文献   

14.
The adenylyl cyclases (AC) act as second messengers in regulatory processes in the central nervous system. They might be involved in the pathophysiology of diseases, but their biological function is unknown, except for AC type I, which has been implicated in learning and memory. We previously mapped the gene encoding AC I to human Chromosome (Chr) 7p12. In this study we report the mapping of the adenylyl cyclase genes type I–VI to mouse chromosomes by fluorescence in situ hybridization (FISH): Adcy1 to Chr 11A2, Adcy2 to 13C1, Adcy3 to 12A-B, Adcy4 to 14D3, Adcy5 to 16B5, and Adcy6 to 15F. We also confirmed previously reported mapping results of the corresponding human loci ADCY2, ADCY3, ADCY5, and ADCY6 to human chromosomes and, in addition, determined the chromosomal location of ADCY4 to human Chr 14q11.2. The mapping data confirm known areas of conservation between mouse and human chromosomes.  相似文献   

15.
16.
A novel phospholipase A2 (PLA2) with Asn at its site 49 was purified from the snake venom of Protobothrops mucrosquamatus by using SP-Sephadex C25, Superdex 75, Heparin-Sepharose (FF) and HPLC reverse-phage C18 chromatography and designated as TM-N49. It showed a molecular mass of 13.875 kDa on MALDI-TOF. TM-N49 does not possess enzymatic, hemolytic and hemorrhagic activities. It fails to induce platelet aggregation by itself, and does not inhibit the platelet aggregation induced by ADP. However, it exhibits potent myotoxic activity causing inflammatory cell infiltration, severe myoedema, myonecrosis and myolysis in the gastrocnemius muscles of BALB/c mice. Phylogenetic analysis found that that TM-N49 combined with two phospholipase A2s from Trimeresurus stejnegeri, TsR6 and CTs-R6 cluster into one group. Structural and functional analysis indicated that these phospholipase A2s are distinct from the other subgroups (D49 PLA2, S49 PLA2 and K49 PLA2) and represent a unique subgroup of snake venom group II PLA2, named N49 PLA2 subgroup.  相似文献   

17.
The primary structure of rat platelet phospholipase A2   总被引:1,自引:0,他引:1  
In our previous report (Hayakawa, M., Kudo, I., Tomita, M., & Inoue, K. (1988) J. Biochem. 103, 263-266), we have shown that phospholipases A2 purified from rat platelet membrane fractions and an extracellular medium of thrombin-stimulated rat platelets were essentially identical to each other. Both purified enzymes were digested with proteases, and the resulting peptides were subjected to primary sequence determination. The sequence analysis of the HPLC-separated peptides and the alignment of the sequences showed a tentative primary structure of rat platelet phospholipase A2, which was composed of 125 amino acid residues. It showed 47% homology with snake venom Agkistrodon halys blomhoffii phospholipase A2.  相似文献   

18.
The localization of calcium-dependent phospholipase A2, (PLA2) immunochemically closely related to the enzyme of the viperid and crotalid type (group II), in cells isolated from rat spleen and liver was examined using a polyclonal antibody directed against rat spleen group II, PLA2 (PLA2M). In isolated spleen cells, the monocyte/macrophage fraction had the highest PLA2 activity (1.28 +/- 0.35.min-1.10(6) cells-1) which was almost completely inhibited by the anti-PLA2M antibody. An immunoblot analysis confirmed the presence of the enzyme in this fraction. An immunocytochemical study revealed that the PLA2 was present in spleen macrophages. In the isolated liver cells, Kupffer cells (0.92 +/- 0.22 nmol.min-1.10(6) cells-1) contained higher anti-PLA2M-antibody-inhibitable PLA2 activity than parenchymal cells (0.26 +/- 0.06.min-1.10(6) cells-1). The immunocytochemical study showed that cells immunopositive with anti PLA2M antibody were Kupffer cells. These results suggest that the mononuclear phagocytic cells in rat spleen and liver have relatively high activity of group-II-like PLA2. Subcellular distribution patterns of the anti-PLA2M-antibody-inhibitable phospholipase A2 activity in different cell populations from spleen and liver were compared. A mode of the distribution of the enzyme in the spleen macrophages was essentially similar to that in the spleen lymphocytes. The distribution in Kupffer cells was similar to that in parenchymal cells.  相似文献   

19.
The distribution of a dopamine D2 receptor mRNA in rat brain   总被引:4,自引:0,他引:4  
D M Weiner  M R Brann 《FEBS letters》1989,253(1-2):207-213
Based on the recently reported sequence of a dopamine D2 receptor cloned from rat brain, we prepared a series of cDNA probes to determine the distribution of mRNA encoding this receptor. Within the forebrain, D2 receptor mRNA is abundant in the caudate-putamen, accumbens nucleus and olfactory tubercle. Moderate to low levels of mRNA are observed in the medial habenular nucleus, diagonal band, lateral septal nucleus, claustrum, dorsal endopiriform nucleus, and entorhinal cortex. In the mesencephalon, D2 receptor mRNA is abundant within the substantia nigra, pars compacta, and the ventral tegmental area. Comparison of the distribution of the mRNA and ligand binding indicates that both presynaptic and postsynaptic D2 receptors of the nigrostriatal, mesolimbic and mesocortical pathways are derived from the same mRNA.  相似文献   

20.
Lipopolysaccharide (LPS) induces a delayed release (lag phase of 2-4 h) of arachidonic acid (AA) and prostaglandin (PG) D2 in rat liver macrophages. Group IV cytosolic phospholipase A2 (cPLA2) becomes phosphorylated within minutes after the addition of LPS. The phosphorylated form of cPLA2 shows an enhanced in vitro activity. The Ca2+ dependence of cPLA2 activity is not affected by phosphorylation of the enzyme. In addition, LPS induces an enhanced expression of cPLA2 mRNA (after 2-4 h) and an enhanced expression of cPLA2 protein (after 8 h). The cellular cPLA2 activity is enhanced about twofold 24 h after LPS treatment. Liver macrophages constitutively express mRNAs encoding Groups V and IIA secretory PLA2 (sPLA2). LPS has no effect on the levels of Groups V and IIA sPLA2 mRNA expression. Despite mRNA expression, Groups V and IIA sPLA2 protein and sPLA2 activity are not detectable in unstimulated or LPS-stimulated liver macrophages. Collectively, these and earlier [Mediators Inflammation 8 (1999) 295.] results suggest that in liver macrophages the LPS-induced delayed release of AA and prostanoids is mediated by phosphorylation and an enhanced expression of cPLA2, a de novo expression of cyclooxygenase (COX)-2, but not by the actions of Group V or Group IIA sPLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号