首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The regulation of gene expression is an important determinant of organismal phenotype and evolution. However, the widespread recognition of this fact occurred long after the synthesis of evolution and genetics. Here, we give a brief sketch of thoughts regarding gene regulation in the history of evolution and genetics. We then review the development of genome-wide studies of gene regulatory variation in the context of the location and mode of action of the causative genetic changes. In particular, we review mapping of the genetic basis of expression variation through expression quantitative trait locus studies and measuring the cis/trans component of expression variation in allele-specific expression studies. We conclude by proposing a systematic integration of ideas that combines global mapping studies, cis/trans tests and modern population genetics methodologies, in order to directly estimate the forces acting on regulatory variation within and between species.  相似文献   

3.
4.
5.
Understanding the determinants of the rate of protein sequenceevolution is of fundamental importance in evolutionary biology.Many recent studies have focused on the yeast because of theavailability of many genome-wide expressional and functionaldata. Yeast studies revealed a predominant role of gene expressionlevel and a minor role of gene essentiality in determining therate of protein sequence evolution. Whether these rules applyto complex organisms such as mammals is unclear. Here we assemblea list of 1,138 essential and 2,341 nonessential mouse genesbased on targeted gene deletion experiments and report a significantimpact of gene essentiality on the rate of mammalian proteinevolution. Gene expression level has virtually no effect, althoughtissue specificity in expression pattern has a strong influence.Unexpectedly, gene compactness, measured by average intron sizeand untranslated region length, has the greatest influence.Hence, the relative importance of the various factors in determiningthe rate of mammalian protein evolution is gene compactness> gene essentiality tissue specificity > expression level.Our results suggest a considerable variation in rate determinantsbetween unicellular organisms such as the yeast and multicellularorganisms such as mammals.  相似文献   

6.
Toward a neutral evolutionary model of gene expression   总被引:4,自引:2,他引:2       下载免费PDF全文
Khaitovich P  Pääbo S  Weiss G 《Genetics》2005,170(2):929-939
  相似文献   

7.
Stochastic noise in gene expression causes variation in the development of phenotypes, making such noise a potential target of stabilizing selection. Here, we develop a new simulation model of gene networks to study the adaptive landscape underlying the evolution of robustness to noise. We find that epistatic interactions between the determinants of the expression of a gene and its downstream effect impose significant constraints on evolution, but these interactions do allow the gradual evolution of increased robustness. Despite strong sign epistasis, adaptation rarely proceeds via deleterious intermediate steps, but instead occurs primarily through small beneficial mutations. A simple mathematical model captures the relevant features of the single‐gene fitness landscape and explains counterintuitive patterns, such as a correlation between the mean and standard deviation of phenotypes. In more complex networks, mutations in regulatory regions provide evolutionary pathways to increased robustness. These results chart the constraints and possibilities of adaptation to reduce expression noise and demonstrate the potential of a novel modeling framework for gene networks.  相似文献   

8.
We define ESS (Evolutionary Stable Strategy) conditions for the evolution of genomic imprinting at an X-linked locus. The system analysed is designed for mammalian imprinting in which X-linked genes typically undergo random X-inactivation and lack Y-linked homologues. We consider two models that map cellular gene expression to fitness in females subject to random X-inactivation. In the first model, female fitness is simply a function of the average gene expression across all cells. In the second model, each cell contributes independently to fitness, and female fitness is assessed as the average of these contributions across all cells. In both models, imprinting readily evolves when sexual selection favours different levels of gene expression in the two sexes. Imprinting is beneficial as it improves adaptation in both sexes. There are limits to the improvement in adaptation when sexual selection is strong and favours greater gene expression in males (the heterogametic sex). We also consider the consequences of an active Y-linked homologue on the evolution of imprinting. Our analysis suggests that restrictive conditions apply for the evolution of polymorphic ESSs at an X-linked imprinted loci.  相似文献   

9.
Population genetic variation in genome-wide gene expression   总被引:21,自引:0,他引:21  
Evolutionary biologists seek to understand which traits display variation, are heritable, and influence differential reproduction, because such traits respond to natural selection and underlie organic evolution. Selection acts upon individual differences within a population. Whether individual differences within a natural population include variation in gene expression levels has not yet been addressed on a genome-wide scale. Here we use DNA microarray technology for measuring comparative gene expression and a refined statistical analysis for the purpose of comparing gene expression levels in natural isolates of the wine yeast Saccharomyces cerevisiae. A method for the Bayesian analysis of gene expression levels is used to compare four natural isolates of S. cerevisiae from Montalcino, Italy. Widespread variation in amino acid metabolism, sulfur assimilation and processing, and protein degradation-primarily consisting of differences in expression level smaller than a factor of 2-is demonstrated. Genetic variation in gene expression among isolates from a natural population is present on a genomic scale. It remains to be determined what role differential gene expression may play in adaptation to new or changing environments.  相似文献   

10.
The hypothesis that differences in gene regulation have an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at an unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels and have developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates and how they are complemented by studies in model organisms.  相似文献   

11.
Controlling gene expression in response to stress   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
Linking molecular evolution to biological function is a long‐standing challenge in evolutionary biology. Some of the best examples of this involve opsins, the genes that encode the molecular basis of light reception. In this issue of Molecular Ecology, three studies examine opsin gene sequence, expression and repertoire to determine how natural selection has shaped the visual system. First, Escobar‐Camacho et al. ( 2017 ) use opsin repertoire and expression in three Amazonian cichlid species to show that a shift in sensitivity towards longer wavelengths is coincident with the long‐wavelength‐dominated Amazon basin. Second, Stieb et al. ( 2017 ) explore opsin sequence and expression in reef‐dwelling damselfish and find that UV‐ and long‐wavelength vision are both important, but likely for different ecological functions. Lastly, Suvorov et al. ( 2017 ) study an expansive opsin repertoire in the insect order Odonata and find evidence that copy number expansion is consistent with the permanent heterozygote model of gene duplication. Together these studies emphasize the utility of opsin genes for studying both the local adaptation of sensory systems and, more generally, gene family evolution.  相似文献   

14.
郭金虎  赵寿元 《生命科学》2005,17(3):218-221
人类的物种形成与进化问题一直是研究的一个焦点。近年来,对于人和灵长类以及果蝇等其他一些动物多种组织基因表达谱的研究表明,在人的进化过程中脑基因表达的改变最为显著,并且脑中许多基因的表达呈显著上调。信息学分析显示,在多种组织当中,人的脑与睾丸可能存在最为相似的基因表达谱。这些结果提示睾丸可能与脑类似,也在人的物种形成和进化历程中起着重要作用。本文对人睾丸和脑基因表达谱的研究进行了回顾,并提出了该研究方向今后的一些研究设想。  相似文献   

15.
16.
17.
The tempo and mode of evolution of loci with a large effect on adaptation and reproductive isolation will influence the rate of evolutionary divergence and speciation. Desaturase loci are involved in key biochemical changes in long-chain fatty acids. In insects, these have been shown to influence adaptation to starvation or desiccation resistance and in some cases act as important pheromones. The desaturase gene family of Drosophila is known to have evolved by gene duplication and diversification, and at least one locus shows rapid evolution of sex-specific expression variation. Here, we examine the evolution of the gene family in species representing the Drosophila phylogeny. We find that the family includes more loci than have been previously described. Most are represented as single-copy loci, but we also find additional examples of duplications in loci which influence pheromone blends. Most loci show patterns of variation associated with purifying selection, but there are strong signatures of diversifying selection in new duplicates. In the case of a new duplicate of desat1 in the obscura group species, we show that strong selection on the coding sequence is associated with the evolution of sex-specific expression variation. It seems likely that both sexual selection and ecological adaptation have influenced the evolution of this gene family in Drosophila.  相似文献   

18.
Recent large-scale studies of evolutionary changes in gene expression among mammalian species have led to the proposal that gene expression divergence may be neutral with respect to organismic fitness. Here, we employ a comparative analysis of mammalian gene sequence divergence and gene expression divergence to test the hypothesis that the evolution of gene expression is predominantly neutral. Two models of neutral gene expression evolution are considered: 1-purely neutral evolution (i.e., no selective constraint) of gene expression levels and patterns and 2-neutral evolution accompanied by selective constraint. With respect to purely neutral evolution, levels of change in gene expression between human-mouse orthologs are correlated with levels of gene sequence divergence that are determined largely by purifying selection. In contrast, evolutionary changes of tissue-specific gene expression profiles do not show such a correlation with sequence divergence. However, divergence of both gene expression levels and profiles are significantly lower for orthologous human-mouse gene pairs than for pairs of randomly chosen human and mouse genes. These data clearly point to the action of selective constraint on gene expression divergence and are inconsistent with the purely neutral model; however, there is likely to be a neutral component in evolution of gene expression, particularly, in tissues where the expression of a given gene is low and functionally irrelevant. The model of neutral evolution with selective constraint predicts a regular, clock-like accumulation of gene expression divergence. However, relative rate tests of the divergence among human-mouse-rat orthologous gene sets reveal clock-like evolution for gene sequence divergence, and to a lesser extent for gene expression level divergence, but not for the divergence of tissue-specific gene expression profiles. Taken together, these results indicate that gene expression divergence is subject to the effects of purifying selective constraint and suggest that it might also be substantially influenced by positive Darwinian selection.  相似文献   

19.
Infection-related gene expression in Candida albicans   总被引:1,自引:0,他引:1  
Research into the major fungal pathogen, Candida albicans has firmly entered the post-genomics era. The current challenge is to apply these technologies to the analysis of C. albicans infections. Initial studies, which focused on the expression of specific virulence genes, have supported the view that secreted hydrolases and adhesins are expressed in a niche-specific fashion during infection. However, genome-wide expression profiling has revealed that most infection-related changes in C. albicans gene expression reflect environmental adaptation. Initial contacts with the host and disease progression are clearly associated with metabolic and stress adaptation. These studies, together with analyses of C. albicans mutants, indicate that physiological fitness plays a central role in the pathogenicity of this fungus, alongside virulence factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号