首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet absorption (UV) and electronic circular dichroism (ECD) spectra of enantiopure (Z)-8-methoxy-4-cyclooctenone (MCO) were measured in hexane to give a normal single UV absorption band at 298 nm, which is assigned to the carbonyl's pi*<--n transition. Unexpectedly, the ECD spectrum exhibited an apparent couplet pattern with vibrational fine structures. Obviously, the conventional CD exciton coupling mechanism cannot be applied to this bisignate CD signal observed for single-chromophoric MCO. Variable temperature-ECD and vibrational circular dichroism (VCD) spectral measurements, simultaneous UV and ECD spectral band resolution, and density functional theory (DFT) calculations of energy and structure revealed that this apparent CD couplet originates from a rather complicated spectral overlap of more than three conformers of MCO, two of which exhibit mirror-imaged ECD spectra at appreciably deviated wavelengths. In the simultaneous band-resolution analysis, the observed UV and ECD spectra were best fitted to four overlapping bands. Two major conformers were identified by comparing the experimental IR and VCD spectra with the simulated ones, and the other two by comparing the observed UV and ECD spectra with the theoretical ones obtained by time-dependent DFT calculations. It was shown that the combined use of experimental ECD and VCD spectra and theoretical DFT calculations can give a reasonable interpretation for the Cotton effects of the conformationally flexible molecule MCO.  相似文献   

2.
The UV absorption and electronic circular dichroism (ECD) spectra of (R)‐ and (S)‐nicotine and (S)‐nornicotine in aqueous solution were measured to a significantly lower wavelength range than previously reported, allowing the identification of four previously unobserved electronic transitions. The ECD spectra of the two enantiomers of nicotine were equal in magnitude and opposite in sign, while the UV absorption spectra were coincidental. In line with previous observations, (S)‐nicotine exhibited a negative cotton effect centered on 263 nm with vibronic structure (π–π1* transition) and a broad, positive ECD signal at around 240 nm associated with the n–π1* transition. As expected this band disappeared when the pyridyl aromatic moiety was protonated. Four further electronic transitions are reported between 215 and 180 nm; it is proposed the negative maxima around 206 nm is either an n–σ* transition or a charge transfer band resulting from the movement of charge from the pyrrolidyl N lone pair to the pyridyl π* orbital. The pyridyl π–π2* transition may be contained within the negative ECD signal envelope at around 200 nm. Another negative maximum at 188 nm is thought to be the pyridyl π–π3* transition, while the lowest wavelength end‐absorption and positive ECD may be associated with the π–π4* transition. The UV absorption spectra of (S)‐nornicotine was similar to that of (S)‐nicotine in the range 280–220 nm and acidification of the aqueous solution enhanced the absorption. The ECD signals of (S)‐nornicotine were considerably less intense compared to (S)‐nicotine and declined further on acidification; in the far UV region the ECD spectra diverge considerably. Chirality 25:288–293, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Morita HE  Kodama TS  Tanaka T 《Chirality》2006,18(10):783-789
Infrared (IR) and vibrational circular dichroism (VCD) spectra of chiral camphor, camphorquinone and camphor-10-sulfonic acid (CSA), known as standard compounds for electronic circular dichroism (ECD) spectroscopy, are measured and their vibrational frequencies, infrared intensities, and rotational strengths are calculated using density functional theory (DFT). The observed IR and VCD spectra of chiral camphor and camphorquinone in carbon tetrachloride solution are reproduced by the DFT calculations, but those of CSA are not. DFT calculations of hydration models, where an anionic CSA specifically binds a few water molecules, are carried out. The average of the simulated VCD spectra in the hydration models is more consistent with the observed spectra. In addition, the wavelengths and dipole and rotational strengths for chiral camphor, camphorquinone, anionic CSA, and the hydration models were calculated by time-dependent DFT. In the region of 280-300 nm, the calculated wavelengths of the ECD bands for chiral camphor and camphorquinone coincide with the observed wavelengths that have been reported, and the calculated wavelengths for the hydration models are closer to the observed wavelengths reported than are those calculated for chiral anionic CSA. Consequently, the analysis combined with VCD and ECD spectroscopy using DFT calculations can elucidate the chirality of optically active molecules, even in an aqueous solution.  相似文献   

4.
Tanaka T  Kodama TS  Morita HE  Ohno T 《Chirality》2006,18(8):652-661
Structures of model compounds mimicking aromatic amino acid residues in proteins are optimized by density functional theory (DFT), assuming that the main-chain conformation was a random coil. Excitation energies and dipole and rotational strengths for the optimized structures were calculated based on time-dependent DFT (TD-DFT). The electronic circular dichroism (ECD) bands of the models were significantly affected by side-chain conformations. Hydration models of the aromatic residues were also subjected to TD-DFT calculations, and the ECD bands of these models were found to be highly perturbed by the hydration of the main-chain amide groups. In addition to calculating the random-coil conformation, we also performed TD-DFT calculations of the aromatic residue models, assuming that the main-chain conformation was an alpha-helix or beta-strand. As expected, the overall feature of the ECD bands was also perturbed by the main-chain conformations. Moreover, vibrational circular dichroism (VCD) spectra of the hydration models in a random-coil structure were simulated by DFT, which showed that the VCD spectra are more sensitive to the side-chain conformations than the ECD spectra. The present results show that analyses combining ECD and VCD spectroscopy and using DFT calculations can elucidate the main- and side-chain conformations of aromatic residues in proteins.  相似文献   

5.
Circular dichroism studies of glycosaminoglycans including chemically transformed heparins at various pH values reveal that carboxyl chromophore plays an important role in the dichroic behavior of the polymers. With decreasing pH, iduronic acid-containing glycosaminoglycans show increased negative ellipticity near 220 nm whereas the polymers containing glucuronic acid display enhanced negative dichroism near 230 nm and decreased negative dichroism around 210 nm. The pH-dependent optical properties have been utilized to determine the pKa values of uronic acid moieties. The acid strengths of the iduronic acid-containing glycosaminoglycans are inherently smaller than those of corresponding glucuronic acid-containing polymers. Glycosaminoglycans in which the amino sugars are linked with iduronic acid display a very weak n leads to pi* amide transition, or none. The rotational strength at 210 nm of these polymers is largely due to iduronic acid moieties. The CD variations above 200 nm with change in pH do not indicate any major conformational transition of the molecules but the difference between dermatan sulfate and heparin can be attributed to difference either in iduronic acid conformation or in intersaccharide linkages.  相似文献   

6.
Gekko K  Matsuo K 《Chirality》2006,18(5):329-334
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of various amino acids, saccharides, and proteins were measured using a synchrotron-radiation CD spectrophotometer at HiSOR/HSRC that is capable of measuring the CD spectra down to 140 nm in aqueous solution. L-Isomers of amino acids show two successive positive peaks at around 200 and 180 nm depending on the side chain. The ab initio assignment by time-dependent density functional theory predicts that these peaks are attributed to n-pi* and pi-pi* transitions of the carboxyl group, respectively. Most mono- and disaccharides exhibit characteristic peaks at around 170 nm, sensitively depending on the anomeric and axial/equatorial configurations of hydroxyl groups, trans-gauche conformations of the hydroxymethyl group, and the type of glycosidic linkage. The VUVCD spectra of 31 globular proteins allow us to estimate more accurately the content and number of alpha-helix and beta-strand segments by extending the short-wavelength limit of the analytical program SELCON3 down to 160 nm. These results demonstrate that synchrotron-radiation VUVCD spectroscopy is a useful tool for structure analyses of biomolecules in solution based on the higher energy transitions of chromophores.  相似文献   

7.
Determination of the absolute configuration of the 1-carboxyethyl substituent on a monosaccharide by circular dichroism measurements was found to be a sensitive and simple method. It relies on comparison of the spectrum of a 1-carboxyethyl substituted sugar or sugar derivative with the spectra of (R)- and (S)-lactic acid in the region 200-260 nm in which the (R)- and (S)-configuration give negative and positive deltaepsilon, respectively. The oligo- or poly-saccharide containing a 1-carboxyethyl substituted sugar is hydrolyzed to monomers and the 1-carboxyethyl substituted sugar isolated by chromatography. The CD spectrum obtained for the 1-carboxyethyl substituted sugar in water solution at pH 2 is then compared with spectra of (R)- and (S)-lactic acid. The sign for the absorption and a maximum of comparable intensity and appearance around 210 nm, identify the stereochemistry.  相似文献   

8.
Kunihiko Gekko 《Biopolymers》1979,18(8):1989-2003
The effects of neutralization, charge density, concentration, counterion, and added salts on CD spectra of carboxymethyldextran (Cm-dextran) were systematically investigated in order to understand the polyelectrolytic effects of ionic polysaccharides on CD spectra. CD curves of sodium Cm-dextran showed a negative band near 214 nm due to the carboxyl n – π* transition, but the acid spectrum indicated an additional positive band near 225–228 nm, depending on the charge density. The increase in charge density caused the increase in the magnitude of ellipticity and the red shift of the band. The magnitude of the CD band showed a remarkable concentration dependence in water without any change of position and shape but was independent of concentration in the presence of salt. CD spectra of Cm-dextran were drastically influenced by the kind of counterion and added salts. These variations of CD spectra under different conditions are discussed from the viewpoint of ion binding and the intermolecular and intramolecular electrostatic interactions of this polysaccharide.  相似文献   

9.
The study of the Cu(II)-hyaluronate complexes by absorption and CD spectra, as well as by acid–base titration and viscosity, provides information about the nature of ligands and the conformation of the polymer. Three different complexes have been identified. The first (complex I), which is formed between pH 3 and 6, involves mainly the carboxyl groups of the polymer as ligands and is characterized by a strong absorption band at 238 nm. In this complex formation, the CD properties of hyaluronate do not charge appreciably. The second (complex II) forms between pH 6 and 8 bad shows a major change in CD properties. The changes include (1) a new positive CD band at 250 nm and a strong negative on in the π → π* amide transition region and (2) the disappearance of the negative n → π* amide CD band near 210 nm. A sharp increase in absorbance at 238 nm from complex I to II has been attributed to a conformational transition which is also manifested in the CD features of hyaluronate. Complex II involves, in addition to the carboxyl group, the nitrogen atom of the deprotonated acetamido group coordinated to Cu(II). The absorption at 230–280 nm is associated with the optically active charge-transfer transitions involving ligands to metal ion. At higher concentrations of the polymer or at higher pH, complex II aggregates to a gel, complex III. Chondroitin, differing from hyaluronic acid in the C-4 hydroxyl group configuration of the glucosamine moiety, does not show any CD change in the presence of Cu(II).The results provide further support to our fourfold helical structure of Cu(II)–hyaluronate complex at pH between 6 and 8. Intrinsic viscosities of hyaluronate in the presence of the cupric ion is lower than in the presence of other monovalent or bivalent cations, indicating a compact conformation of the polymer when it is complexed with Cu(II).  相似文献   

10.
Aqueous solutions of copper-proteins containing type-3 centres (ceruloplasmin, tyrosinase, haemocyanin), excited within their absorption bands at 325-345 nm, show typical luminescence spectra. The emission bands peak at 415-445 nm and their decay time is no longer than 10 ns. A strong analogous fluorescence is obtained also by excitation of concentrated solutions of carboxylic acids and amino acids, which show again absorption bands around 330 nm. Such a fluorescence, although less intense, is also observed in copper(II) carboxylate solutions. In contrast, no fluorescence has been recorded in solutions of acetic anhydride and of polypeptides (valinomycin, gramicidin D), which do not have free carboxyl groups. We tentatively attribute this novel fluorescence in the investigated copper proteins to interactions between carboxyl groups of amino acids at, or near, the active site.  相似文献   

11.
J W Caldwell  J Applequist 《Biopolymers》1984,23(10):1891-1904
Absorption, CD, and LD spectra of the π-π* transition near 200 nm are calculated for poly(Gly-X-Y) (X,Y = Gly, Ala, Pro) in four conformations proposed for collagen like triple helices in the recent literature. A dipole interaction model is used with the same optical paramenters as in previous studies of polypeptide spectra. The CD spectra are sensitive to backbone structure and amino acid composition, although the experimentally observed negative peak near 200 nm is a general feature of most the calculated spectra. Interchain interactions significantly affect the CD spectra in most cases. Calculations for (Gly-Pro-Ala)3 and (Gly-Ala-Pro)3 in the triple helical structure of Fraser, MacRae, and Suzuki [(1979) J. Mol. Biol. 129 , 463–481] show absorption, CD, and LD spectra in fairly good agreement with experiment. The characteristics of the π-π* normal modes responsible for the calculated spectra are compared with those of the component bands resolved from the experimental spectra of collagen by Mandel and Holzwarth [(1973) Biopolymers 12 , 655–674].  相似文献   

12.
Circular dichroism, optical rotatory dispersion, and viscosity of hyaluronic acid at various solvents compositions, concentrations, and pH values have been studied. The data show a large change in the molecular properties in organic/water solvents such as ethanol, p-dioxane, or acetonitrile/water at pH ? pKa. At this pH range of aqueous solution, hyaluronic acid shows a CD minimum near 210 nm whereas in the presence of organic solvent it exhibits a strong negative dichroism (below 200 nm) and a positive band near 226 nm. It undergoes a sharp, cooperative transition with respect to pH and solvent. The observed CD features are assigned to the π-π* and n-π* transitions of the amide and carboxyl chromophores. The ORD results show a gradual blue shift of trough at 220 nm with increasing magnitude of rotation when the organic solvents and hydrogen ion concentrations are increased. A one-term Drude's equation was used to analyze the ORD data, and the result show a variation of dispersion parameters with different solvents in accordance with the observed CD changes. The intrinsic viscosity of hyaluronic acid in mixed solvent at pH 2.6 is lower than that of aqueous solution. All the observed property changes of hyaluronic acid are reversed on addition of foramide in mixed solvents indicating that the hydrogen bonds are involved in this transition. The observed spectroscopic and hydrodynamic features are attributed to a conformational change of hyaluronic acid in a mixed solvent involving intramolecular hydrogen bonding between the acetamido and carboxyl groups. The possible conformational state of hyaluronic acid in solution under various conditions is discussed in terms of the reported helical structure of hyaluronic acid from x-ray diffraction studies.  相似文献   

13.
Gamma irradiation of DNA solutions containing copper causes changes in DNA conformation in oligonucleotides and in natural and synthetic DNAs. Diagnostic for these conformational changes is a ubiquitous 187-nm peak in the circular dichroism (CD) difference spectrum that has been predicted for a transformation from a right-handed to a left-handed helical DNA conformation. Changes in CD are correlated with changes in the UV spectrum. Reduction of DNA-bound Cu(II) to Cu(I) with ascorbic acid produces similar changes in CD spectra. These changes can be produced by the peroxy radical anion (O2*-) and the OH radical in the presence of copper. O2*- is approximately twice as efficient as *OH in initiating these changes in natural DNA. The changes in DNA conformation induced by ionizing radiation are remarkable in that they are dependent on the copper-ion concentration in a highly nonlinear manner at low copper concentrations and are not observed in the absence of copper ions. Possible implications of our results for radiobiological and oxidative damage in the cell nucleus are discussed.  相似文献   

14.
Spectral changes of hemoproteins in the near ultraviolet region on binding to a ligand and on oxidation-reduction of the heme-iron were studied by computer-controlled spectrophotometry. Near ultraviolet difference spectra between the low spin and high spin forms of ferric hemoproteins were classified into three groups: Those showing two absorption peaks having maxima at around 285 and 295 nm, those showing a peak at around 275 nm, and those showing a peak at around 300 nm. No corresponding absorption peak was observed with model heme complexes of low molecular weight. The intensity of the peak in cyanide difference spectra of catalase and horseradish peroxidase in the near ultraviolet region was dependent on the concentration of added cyanide and paralleled the intensity of the spectral changes in the Soret region. The spectral changes in both the near ultraviolet and Soret regions developed within 6 ms after the addition of cyanide. Difference spectra between the reduced and oxidized forms of cytochrome c, cytochrome oxidase-cyanide complex, hemoglobin, and lactoperoxidase-cyanide complex showed a characteristic peak at around 285-290 nm. Various difference spectra of hemoglobin in the near ultraviolet region were also measured. The observed positions, shapes, combinations, and relative intensities of the peaks were compared with those of solvent perturbation difference spectra and pH difference spectra of proteins and aromatic amino acids and also with the diacetylchitobiose-induced difference spectrum of lysozyme. The kinds of aromatic amino acid residues possibly responsible for the observed difference peaks were discussed on the basis of the results of the comparison. Based on the results obtained, the common occurrence of a heme-linked functional response of the hemoprotein conformation was suggested.  相似文献   

15.
The chromophore of bacteriorhodopsin undergoes a transition from purple (570 nm absorbance maximum) to blue (605 nm absorbance maximum) at low pH or when the membrane is deionized. The blue form was stable down to pH 0 in sulfuric acid, while 1 M NaCl at pH 0 completely converted the pigment to a purple form absorbing maximally at 565 Other acids were not as effective as sulfuric in maintaining the blue form, and chloride was the best anion for converting blue membrane to purple membrane at low pH. The apparent dissociation constant for Cl- was 35 mM at pH 0, 0.7 M at pH 1 and 1.5 M at pH 2. The pH dependence of apparent Cl- binding could be modeled by assuming two different types of chromophore-linked Cl- binding site, one pH-dependent. Chemical modification of bacteriorhodopsin carboxyl groups (probably Asp-96, -102 and/or -104) by 1-ethyl-3-dimethlyaminopropyl carbodiimide, Lys-41 by dansyl chloride, or surface arginines by cyclohexanedione had no effect on the conversion of blue to purple membrane at pH 1. Fourier transform infrared difference spectroscopy of chloride purple membrane minus acid blue membrane showed the protonation of a carboxyl group (trough at 1392 cm -1 and peak at 1731 cm -1). The latter peak shifted to 1723 cm -1 in D2O. Ultraviolet difference spectroscopy of chloride purple membrane minus acid blue membrane showed ionization of a phenolic group (peak at 243 nm and evidence for a 295 nm peak superimposed on a tryptophan perturbation trough). This suggests the possibility of chloride-induced proton transfer from a tyrosine phenolic group to a carboxylate side-chain. We propose a mechanism for the purple to acid blue to chloride purple transition based on these results and the proton pump model of Braiman et al. (Biochemistry 27 (1988) 8516-8520).  相似文献   

16.
《Chirality》2017,29(9):476-485
The electronic circular dichroism (ECD) spectra of two previously reported quassinoids containing a pair of enone chromophores are revisited to gain insight into the consistency and applicability of the exciton chirality method. Our study is based on time‐dependent Density Functional Theory calculations, transition and orbital analysis, and numerical exciton coupling calculations. In quassin ( 1 ) the enone/enone exciton coupling is quasi‐degenerate, yielding strong rotational strengths that account for the observed ECD spectrum in the enone π‐π* region. In perforalactone C ( 2 ) the nondegenerate coupling produces weak rotational strengths, and the ECD spectrum is dominated by other mechanisms of optical activity. We remark the necessity of a careful application of the nondegenerate exciton coupling method in similar cases.  相似文献   

17.
An approximate semiempirical procedure has been developed in order to derive nucleic acid monomer π → π* electronic transition moment parameters. Using the approximate procedure, guanine (G) and cytosine (C) transition moment parameters have been derived from agreement found between calculated weight-averaged and measured CD spectra of cyclic-GMP and cyclic-CMP. The derived base transition moment parameters have been assessed in CD spectral calculations on some G- and C-containing nucleic acids for which reasonably good structural information exists. An attempt was also made at evaluating the likely CD spectral contributions of G and C electric n → π* transition moments whose magnitudes were taken to be the maximum expected. Overall, the results indicate that the derived G and C π → π* transition moment parameters are more successful in nucleic acid CD spectral calculations than those used in previous DeVoe theory CD calculations. In addition, the results indicate that electric n → π* transitions may be of importance in understanding nucleic acid monomer CD spectra but appear to be relatively unimportant in understanding nucleic acid polymer CD spectra. It is concluded that the derived G and C π → π* parameters are more useful in DeVoe theory CD calculations than parameters used previously.  相似文献   

18.
Sachio Goto 《Biopolymers》1984,23(11):2211-2222
Time-dependent uv absorption and CD spectrum changes in salt-induced conformational B → Z and Z → B transitions of poly(dG? dC) · poly(dG? dC) were measured. This polynucleotide does not convert directly from a right-handed double-helical B form to a left-handed double-helical Z form, but goes through an intermediate, B* form, with the B → B* transition proceeding nearly instantaneously, and then transforms gradually to the Z form. Uv absorption spectra of these B and B* forms are nearly identical, but their CD spectra are quite different. The CD spectrum of the B* form is identical with that obtained for DNA in high salt solutions and is similar to a spectrum which for some time was thought to be a C form. These B and B* forms have the same number of base pairs per turn [Sprecher, C.A., Baase, W.A. & Johnson, Jr., W.C. (1979) Biopolymers 18 , 1009–1019]. Kinetic measurements showed that uv absorption and CD intensities at fixed wavelengths do not change in a simple exponential curve. However, both the uv absorption spectrum change in the B → Z transition and the CD spectrum change in the B* → Z transition, respectively, have isosbestic points. In the B → Z transition, no hyperchromicity can be observed. These results suggest that this B* form unfolding or premelting process is a rate-determining step in the B* → Z transition and makes it easy for the unfolded or premelted polynucleotide to almost immediately fold into the Z form. The double helix does not dissociate into single strands and transforms from the B* form to the Z form point-by-point along the chain in a soliton-like manner of with a small amount of open states in which the bases are unpaired. Also, in the Z → B transition, the polynucleotide does not convert directly from the Z to the B form, but goes through a B*-like form. In this transition, the uv-absorption spectra also have an isosbestic point. The reaction velocity in the Z → B transition is much faster than that in the B → Z transition. Possibly, the positive CD band between 265 and 310 nm in the B form comes from a n-π* transition due to an interaction of the bases with sugarphosphate groups.  相似文献   

19.
G C Chen  J P Kane 《Biochemistry》1975,14(15):3357-3362
Low density lipoprotein (LDL) (1.024-1.045 G/cm3) was prepared by ultracentrifugal flotation from serum of normal fasting subjects. Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra in the ultraviolet region were measured at 2, 25, and 37 degrees on LDL, lipid extracted from LDL, and on pure component lipids. All exhibit reversible, temperature-dependent optical activities. Sphingomyelin has a strong negative CD band around 195 nm. Cholesterol and cholesteryl esters have a CD minimum at 208 nm. They have positive CD bands around 201 and 198 nm which decrease sharply and become negative at 198 and 193 nm, respectively. The CD of the total lipid extract of LDL is negative and drops monotonically below 200 nm. Thus, the lipid moiety could account for the increasing negativity of the CD of LDL below 195 nm. After subtraction of the ellipticity corresponding to amounts of lipids in organic solvents equivalent to those found in LDL, the 208-210 nm trough of LDL diminishes markedly. This is accompanied by a blue-shift of the extrema from 195-196 to 193 nm and an increase in the magnitude of the positive ellipticity. The fractions of helix and of beta form in the protein, determined by the method of Y. H. Chen, J. T. Yang, and K. H. Chau ((1974), Biochemistry 13, 3350), in the wavelength interval of 250-240 nm, remain essentially unchanged between 2 and 37 degrees. These observations suggest that a substantial part of the thermal change in the CD spectrum of LDL between 208 and 210 nm may be attributable to lipids.  相似文献   

20.
We have measured the electronic circular dichroism (ECD) of the ferri- and ferro-states of several natural cytochrome c derivatives (horse heart, chicken, bovine, and yeast) and the Y67F mutant of yeast in the region between 300 and 750 nm. Thus, we recorded the ECD of the B- and Q-band region as well as the charge-transfer band at approximately 695 nm. The B-band region of the ferri-state displays a nearly symmetric couplet at the B0-position that overlaps with a couplet 790 cm-1 higher in energy, which we assigned to a vibronic side-band transition. For the ferro-state, the couplet is greatly reduced, but still detectable. The B-band region is dominated by a positive Cotton effect at energies lower than B0 that is attributed to a magnetically allowed iron-->heme charge-transfer transition as earlier observed for nitrosyl myoglobin and hemoglobin. The Q-band region of the ferri-state is poorly resolved, but displays a pronounced positive signal at higher wavenumbers. This must result from a magnetically allowed transition, possibly from the methionine ligand to the dxy-hole of Fe3+. For the ferro-state, the spectra resolve the vibronic structure of the Qv-band. A more detailed spectral analysis reveals that the positively biased spectrum can be understood as a superposition of asymmetric couplets of split Q0 and Qv-states. Substantial qualitative and quantitative differences between the respective B-state and Q-state ECD spectra of yeast and horse heart cytochrome c can clearly be attributed to the reduced band splitting in the former, which results from a less heterogeneous internal electric field. Finally, we investigated the charge-transfer band at 695 nm in the ferri-state spectrum and found that it is composed of at least three bands, which are assignable to different taxonomic substates. The respective subbands differ somewhat with respect to their Kuhn anisotropy ratio and their intensity ratios are different for horse and yeast cytochrome c. Our data therefore suggests different substate populations for these proteins, which is most likely assignable to a structural heterogeneity of the distal Fe-M80 coordination of the heme chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号