首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

2.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

3.
Aim The network structure of food webs plays an important role in the maintenance of diversity and ecosystem functioning in ecological communities. Previous research has found that ecosystem size, resource availability, assembly history and biotic interactions can potentially drive food web structure. However, the relative influence of climatic variables that drive broad‐scale biogeographic patterns of species richness and composition has not been explored for food web structure. In this study, we assess the influence of broad‐scale climatic variables in addition to known drivers of food web structure on replicate observations of a single aquatic food web, sampled from the leaves of the pitcher plant (Sarracenia purpurea), at different geographic sites across a broad latitudinal and climatic range. Location Using standardized sampling methods, we conducted an extensive ‘snapshot’ survey of 780 replicated aquatic food webs collected from the leaves of the pitcher plant S. purpurea at 39 sites from northern Florida to Newfoundland and westward to eastern British Columbia. Methods We examined correlations of 15 measures of food web structure at the pitcher and site scales with geographic variation in temperature and precipitation, concentrations of nutrients from atmospheric nitrogen deposition, resource availability, ecosystem size and the abundance of the pitcher plant mosquito (Wyeomyia smithii), a potential keystone species. Results At the scale of a single pitcher plant leaf, linkage density, species richness, measures of chain length and the proportion of omnivores in a web all increased with pitcher volume. Linkage density and species richness were greater at high‐latitude sites, which experience low mean temperatures and precipitation and high annual variation in both of these variables. At the site scale, variation in 8 of the 15 food web metrics decreased at higher latitudes, and variation in measures of chain length increased with the abundance of mosquitoes. Main conclusions Ecosystem size and climatic variables related to latitude were most strongly correlated with network structure of the Sarracenia food web. However, in spite of large sample sizes, thorough standardized sampling and the large geographic extent of the survey, even the best‐fitting models explained less than 40% of the variation in food web structure. In contrast to biogeographic patterns of species richness, food web structure was largely independent of broad‐scale climatic variables. The large proportion of unexplained variance in our analyses suggests that stochastic assembly may be an important determinant of local food web structure.  相似文献   

4.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

5.
The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.  相似文献   

6.
Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S.?purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats.  相似文献   

7.
The leaves of the carnivorous pitcher plant, Sarracenia purpurea, contain a microscopic aquatic food web that is considered a model system in ecological research. The species identity of the intermediate and top trophic level of this food web, as well the detritivore midge, are highly similar across the native geographic range of S. purpurea and, in some cases, appear to have co-evolved with the plant. However, until recently, the identity, geographic variation, and diversity of the bacteria in the bottom trophic level of this food web have remained largely unknown. This study investigated bacterial community composition inside the leaves of S. purpurea to address: 1) variation in bacterial communities at the beginning of succession at the local scale in different areas of the plant’s native geographic range (southern and mid-regional sites) and 2) the impacts of bacterial consumers and other members of the aquatic food web (i.e., insects) on bacterial community structure. Communities from six leaves (one leaf per plant) from New York and Florida study sites were analyzed using 16S ribosomal RNA gene cloning. Each pitcher within each site had a distinct community; however, there was more overlap in bacterial composition within each site than when communities were compared across sites. In contrast, the identity of protozoans and metazoans in this community were similar in species identity both within a site and between the two sites, but abundances differed. Our results indicate that, at least during the beginning of succession, there is no strong selection for bacterial taxa and that there is no core group of bacteria required by the plant to start the decomposition of trapped insects. Co-evolution between the plant and bacteria appears to not have occurred as it has for other members of this community.  相似文献   

8.
Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.  相似文献   

9.
Incremental increases in a driver variable, such as nutrients or detritus, can trigger abrupt shifts in aquatic ecosystems that may exhibit hysteretic dynamics and a slow return to the initial state. A model system for understanding these dynamics is the microbial assemblage that inhabits the cup‐shaped leaves of the pitcher plant Sarracenia purpurea. With enrichment of organic matter, this system flips within three days from an oxygen‐rich state to an oxygen‐poor state. In a replicated greenhouse experiment, we enriched pitcher‐plant leaves at different rates with bovine serum albumin (BSA), a molecular substitute for detritus. Changes in dissolved oxygen (DO) and undigested BSA concentration were monitored during enrichment and recovery phases. With increasing enrichment rates, the dynamics ranged from clockwise hysteresis (low), to environmental tracking (medium), to novel counter‐clockwise hysteresis (high). These experiments demonstrate that detrital enrichment rate can modulate a diversity of hysteretic responses within a single aquatic ecosystem, and suggest different management strategies may be needed to mitigate the effects of high vs. low rates of detrital enrichment.  相似文献   

10.
Plant biologists have an enduring interest in assessing components of plant fitness and determining limits to seed set. Consequently, the relative contributions of resource and pollinator availability have been documented for a large number of plant species. We experimentally examined the roles of resource and pollen availability on seed set by the northern pitcher plant Sarracenia purpurea. We were able to distinguish the relative contributions of carbon (photosynthate) and mineral nutrients (nitrogen) to reproductive success. We also determined potential pollinators of this species. The bees Bombus affinis and Augochlorella aurata and the fly Fletcherimyia fletcheri were the only floral visitors to S. purpurea that collected pollen. Supplemental pollination increased seed set by <10%, a much lower percentage than would be expected, given data from noncarnivorous, animal-pollinated taxa. Seed set was reduced by 14% in plants that could not capture prey and by another 23% in plants whose pitcher-shaped leaves were also prevented from photosynthesizing. We conclude that resources are more important than pollen availability in determining seed set by this pitcher plant and that reproductive output may be another "cost" of the carnivorous habit.  相似文献   

11.
Hoekman D 《Oecologia》2011,165(4):1073-1082
The relative importance of resources (bottom-up forces) and natural enemies (top-down forces) for regulating food web dynamics has been debated, and both forces have been found to be critical for determining food web structure. How the relative importance of top-down and bottom-up forces varies between sites with different abiotic conditions is not well understood. Using the pitcher plant inquiline community as a model system, I examine how the relative importance of top-down and bottom-up effects differs between two disparate sites. Resources (ant carcasses) and top predators (mosquito larvae) were manipulated in two identical 4 × 4 factorial press experiments, conducted at two geographically distant sites (Michigan and Florida) within the range of the purple pitcher plant, Sarracenia purpurea, and the aquatic community that resides in its leaves. Overall, top predators reduced the density of prey populations while additional resources bolstered them, and the relative importance of top-down and bottom-up forces varied between sites and for different trophic levels. Specifically, top-down effects on protozoa were stronger in Florida than in Michigan, while the opposite pattern was found for rotifers. These findings experimentally demonstrate that the strength of predator–prey interactions, even those involving the same species, vary across space. While only two sites are compared in this study, I hypothesize that site differences in temperature, which influences metabolic rate, may be responsible for variation in consumer–resource interactions. These findings warrant further investigation into the specific factors that modify the relative importance of top-down and bottom-up effects.  相似文献   

12.
The phytotelmata of the North American pitcher plant Sarracenia purpurea are colonised by a great variety of aquatic organisms and, thus, provide an ideal model to study trophic interactions in small freshwater ecosystems. Although algae are discussed as a potential food source for predators, little is known about the structure of algae coenoses in pitchers of S. purpurea. This study aims to elucidate temporal shifts in the algae community structure in pitchers of an allochthonous population of S. purpurea in Saxony, Germany. A total of 78 algae taxa was found in the pitchers. Mean algae abundances in new and old pitchers were similar (2.6 x 10(5) and 2.3 x 10(5) algae ml(-1), respectively). Taxa from the orders Chlamydomonadales, Chlorococcales, and Ochromonadales were the primary colonisers. With increasing age of the pitchers the filamentous green algae from the order Klebsormidiales became more abundant. In contrast, pennate diatoms dominated the algae coenoses in the fen. Algae community structure in vase-shaped 50 ml Greiner tubes was similar to those of natural pitchers. Differences in the temporal patterns of algae coenoses in individual pitchers suggested a colonisation of the pitchers by algae via trapped insects, air and rain water rather than via the surrounding fen. Biomass of algae approximated 0.3 mg C ml(-1), which corresponds to 82.8 % of the living biomass (bacteria, heterotrophic nanoflagellates, algae, protozoans and rotifers). Rotifers were abundant in new pitchers; nematodes and mites were seldom found in all pitchers. A similar qualitative and quantitative composition of the aquatic biocoenoses was observed in pitchers of another allochthonous S. purpurea population growing in Blekinge, Sweden. Biomass of algae represented nearly one quarter of the total organic matter content in the pitchers. Thus, nitrogen and phosphorus compounds present in the algae biomass might be used by the carnivorous S. purpurea plant as additional food source in allochthonous populations in Europe lacking top predators.  相似文献   

13.
Geographic variation in morphology reflects phenotypic responses to environmental gradients and evolutionary history of populations and species and may indicate local or regional changes in environmental conditions. The pitcher plant (Sarracenia purpurea) illustrates these principles. At local scales, its morphology reflects nutrient availability. At points along its broad geographic range (from Florida to northern Canada) morphology has been used to distinguish subspecies and varieties, but there has been no detailed study of the continuum of morphological variation across this entire range. Patterns of morphological variation in S. purpurea were characterized as a function of climatic and environmental conditions at 39 sites spanning its range. Differences in pitcher size and shape were strongly correlated with temperature, annual precipitation, and availability of ammonium and calcium in peat pore water. Pitcher shape (lip width, mouth diameter, and pitcher width) in Florida panhandle populations differed significantly from pitcher shape of all other populations, even after accounting for environmental correlations. In contrast, the northern and southern subspecies of S. purpurea (the latter exclusive of the Florida panhandle populations) cannot be distinguished based on these morphological measurements alone. These results support a recent proposal that identifies the Florida populations as a distinct species, Sarracenia rosea.  相似文献   

14.
Studying food webs across contrasting abiotic conditions is an important tool in understanding how environmental variability impacts community structure and ecosystem dynamics. The study of extreme environments provides insight into community‐wide level responses to environmental pressures with relevance to the future management of aquatic ecosystems. In the western Lake Eyre Basin of arid Australia, there are two characteristic and contrasting aquatic habitats: springs and rivers. Permanent isolated Great Artesian Basin springs represent hydrologically persistent environments in an arid desert landscape. In contrast, hydrologically variable river waterholes are ephemeral in space and time. We comprehensively sampled aquatic assemblages in contrasting ecosystem types to assess patterns in community composition and to quantify food web attributes with stable isotopes. Springs and rivers were found to have markedly different invertebrate communities, with rivers dominated by more dispersive species and springs associated with species that show high local endemism. Qualitative assessment of basal resources shows autochthonous carbon appears to be a key basal resource in both types of habitat, although the particular sources differed between habitats. Food‐web variables such as trophic length, trophic breadth, and community isotopic niche size were relatively similar in the two habitat types. The basis for the similarity in food‐web structure despite differences in community composition appears to be broader isotopic niches for predatory invertebrates and fish in springs as compared with rivers. In contrast to published theory, our findings suggest that the food webs of the hydrologically variable river sites may show less dietary generalization and more compact food‐web modules than in springs.  相似文献   

15.
生物入侵对鸟类的生态影响   总被引:1,自引:0,他引:1  
生物入侵是全球生物多样性面临的最主要威胁之一, 入侵种在改变入侵地环境的同时也使当地的生物受到极大影响。鸟类在生态系统中处于较高的营养级, 生态系统中任何一个环节的变化都可能对鸟类造成一定的影响。本文回顾了哺乳动物、鸟类、无脊椎动物和植物等不同生物类群的入侵对本地鸟类生态影响方面的研究进展。外来生物对鸟类的影响主要表现在以下几方面: (1)外来哺乳动物对成鸟、幼鸟或鸟卵的捕食作用; (2)外来鸟类与本地鸟类竞争栖息地和食物资源, 与当地的近缘种杂交而造成基因流失; (3)外来无脊椎动物改变本地鸟类的栖息环境和食物状况, 甚至直接捕食本地鸟类; (4)外来植物入侵改变入侵地的植物群落组成和结构, 造成本地鸟类的栖息地丧失或破碎化, 并通过改变入侵地生态系统的食物链结构而对高营养级的鸟类产生影响。最后, 作者还提出了该领域有待解决的问题和今后可能的研究方向。  相似文献   

16.
Although quantitative data on interspecific interactions within complex food webs are essential for evaluation of assumptions, hypotheses, and predictions of ecological theories; empirical studies yielding quantitative data on complex food webs are very limited. Ecological information on body size, habitat use, and seasonality of the component species of food webs aids in determining the mechanisms of food web structures. Ideally, ecological information on component species should be obtained contemporaneously when used to describe quantitative food webs, but such observations and sampling strategies are labor intensive and thus have been rarely described. We conducted year-round samplings of, and performed observations on, a temperate stream: the upper reaches of the Yura River, Kyoto, Japan. We derived quantitative data on the abundance, biomass, body mass, microhabitat use, and those seasonality of 7 fish species and 167 invertebrate taxa of the temperate stream food web. In addition, we estimated the per mass consumption rates of 7 predatory fish species, consuming 183 prey invertebrates, and the ratios between the per mass consumption rates of the 7 predatory fish species and the production rates of 78 prey invertebrates in each trophic link. All fishes and aquatic invertebrates were identified to species or lowest possible taxon. Our data may contribute to the construction of mathematical models explaining the behavior of stream communities/ecosystems.  相似文献   

17.
Abstract 1. Termites (Isoptera) in tropical savannas are known as ecosystem engineers, affecting the spatial and temporal distribution of water, carbon, cations, and nutrients through their mound structures. Their mounds, however, also offer habitation to diverse taxa and feeding guilds of other invertebrates; a keystone role that has not been properly quantified. 2. The aim of this study was to explore the ecosystem role of termitaria in determining invertebrate diversity and their potential trophic interactions. We used stable isotopes to distinguish termite‐feeding invertebrates from invertebrates merely living in termite mounds under field conditions. 3. The results suggest that inquiline spiders (Arachnida) do not feed on termites directly, but on other invertebrates within the termitaria that are termitophagous, elevating the spiders three trophic levels higher than the termites. 4. This study is the first to demonstrate food web interactions among inquiline invertebrates with a stable isotope approach. It provides evidence that termites play a keystone role in the system by providing habitat for various, trophically interacting invertebrates. These results illustrate a rather unexplored ecosystem property of savanna termites.  相似文献   

18.
A photosynthetic apparatus is present in the epidermis of the bottom zone of the pitcher of Sarracenia purpurea L. ssp. purpurea. This has been demonstrated using conventional light and electron microscopy, as well as fluorescent and immunohistochemical techniques. Red intrinsic fluorescence by these chloroplasts indicates photochemical activity. Antibodies against the coupling factor of chloroplast ATPase and against the subunits of ribulose-bis-phosphate-carboxylase were bound to the epidermal chloroplasts. This has been visualized using a ferritin-isothiocyanate labeled second antibody. These results unequivocally prove the existence of the two main proteins which are associated with the photophosphorylation (membrane protein) and carbon dioxide fixation (stromal protein). The possible implication of this system to interrelationships between the carnivorous plant and aquatic insects inhabiting its leaves is discussed.  相似文献   

19.
Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.  相似文献   

20.
Fire can often occur in aquatic ecosystems, which may affect aquatic invertebrates. Despite the importance of aquatic invertebrates to ecosystem function, the effect of fire on these environments has been little studied. We studied the effects of fire on aquatic invertebrates in artesian springs in the arid zone of South Australia. Artesian springs are a unique and threatened ecosystem, containing several rare and endemic species. Evidence suggests these wetlands were routinely burnt by indigenous Aboriginal people before European settlement over 100 years ago. Recently, burning has been suggested as a reinstated management tool to control the dominant reed Phragmites australis. A reduction in the cover of the reed may benefit the threatened flora and fauna through enhancement of water flow. Three artesian springs were burnt and aquatic invertebrates sampled from the burnt and three unburnt springs. A single fire in late winter completely burnt the dominant vegetation, followed by recovery of Phragmites over the following 2 years. A single fire event did not deplete populations of endemic aquatic invertebrates in artesian springs, but probably did not substantially benefit these populations either. Isopods, amphipods, ostracods and three species of hydrobiid snail survived the fire event, and most had increased in number 1 month post fire but then returned to pre‐burnt numbers by 1 year post fire. Morphospecies richness of all identified invertebrates increased over time in all springs, but did not differ appreciably between burnt and unburnt springs. If burning artesian springs is to be adopted as a management tool to suppress the growth of Phragmites australis, we conclude that the endemic aquatic invertebrates will survive a single burn event, without negative effect to their populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号