首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein-synthesizing system based on a minimal set of purified components was used to investigate the roles molecular chaperones play in the folding of newly synthesized polypeptides. After we ascertained that this system lacks intrinsic chaperones, the effect of adding chaperones in a co-translational or post-translational manner was directly evaluated. An aggregation-prone single-chain antibody was used as the model nascent chain. The participation of the trigger factor or the DnaK system during translation efficiently increased the level of functional protein that was generated. In addition, both systems also acted as chaperones after translation had been stopped. In contrast, the GroEL/ES system showed little or no co- or post-translational assistance in folding.  相似文献   

2.
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome-nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors.  相似文献   

3.
The rate of translational elongation is non-uniform. mRNA secondary structure, codon usage and mRNA associated proteins may alter ribosome movement on the messagefor review see 1. However, it''s now widely accepted that synonymous codon usage is the primary cause of non-uniform translational elongation rates1. Synonymous codons are not used with identical frequency. A bias exists in the use of synonymous codons with some codons used more frequently than others2. Codon bias is organism as well as tissue specific2,3. Moreover, frequency of codon usage is directly proportional to the concentrations of cognate tRNAs4. Thus, a frequently used codon will have higher multitude of corresponding tRNAs, which further implies that a frequent codon will be translated faster than an infrequent one. Thus, regions on mRNA enriched in rare codons (potential pause sites) will as a rule slow down ribosome movement on the message and cause accumulation of nascent peptides of the respective sizes5-8. These pause sites can have functional impact on the protein expression, mRNA stability and protein foldingfor review see 9. Indeed, it was shown that alleviation of such pause sites can alter ribosome movement on mRNA and subsequently may affect the efficiency of co-translational (in vivo) protein folding1,7,10,11. To understand the process of protein folding in vivo, in the cell, that is ultimately coupled to the process of protein synthesis it is essential to gain comprehensive insights into the impact of codon usage/tRNA content on the movement of ribosomes along mRNA during translational elongation.Here we describe a simple technique that can be used to locate major translation pause sites for a given mRNA translated in various cell-free systems6-8. This procedure is based on isolation of nascent polypeptides accumulating on ribosomes during in vitro translation of a target mRNA. The rationale is that at low-frequency codons, the increase in the residence time of the ribosomes results in increased amounts of nascent peptides of the corresponding sizes. In vitro transcribed mRNA is used for in vitro translational reactions in the presence of radioactively labeled amino acids to allow the detection of the nascent chains. In order to isolate ribosome bound nascent polypeptide complexes the translation reaction is layered on top of 30% glycerol solution followed by centrifugation. Nascent polypeptides in polysomal pellet are further treated with ribonuclease A and resolved by SDS PAGE. This technique can be potentially used for any protein and allows analysis of ribosome movement along mRNA and the detection of the major pause sites. Additionally, this protocol can be adapted to study factors and conditions that can alter ribosome movement and thus potentially can also alter the function/conformation of the protein.  相似文献   

4.
Extensive research has provided ample evidences suggesting that protein folding in the cell is a co-translational process1-5. However, the exact pathway that polypeptide chain follows during co-translational folding to achieve its functional form is still an enigma. In order to understand this process and to determine the exact conformation of the co-translational folding intermediates, it is essential to develop techniques that allow the isolation of RNCs carrying nascent chains of predetermined sizes to allow their further structural analysis.SecM (secretion monitor) is a 170 amino acid E. coli protein that regulates expression of the downstream SecA (secretion driving) ATPase in the secM-secA operon6. Nakatogawa and Ito originally found that a 17 amino acid long sequence (150-FSTPVWISQAQGIRAGP-166) in the C-terminal region of the SecM protein is sufficient and necessary to cause stalling of SecM elongation at Gly165, thereby producing peptidyl-glycyl-tRNA stably bound to the ribosomal P-site7-9. More importantly, it was found that this 17 amino acid long sequence can be fused to the C-terminus of virtually any full-length and/or truncated protein thus allowing the production of RNCs carrying nascent chains of predetermined sizes7. Thus, when fused or inserted into the target protein, SecM stalling sequence produces arrest of the polypeptide chain elongation and generates stable RNCs both in vivo in E. coli cells and in vitro in a cell-free system. Sucrose gradient centrifugation is further utilized to isolate RNCs.The isolated RNCs can be used to analyze structural and functional features of the co-translational folding intermediates. Recently, this technique has been successfully used to gain insights into the structure of several ribosome bound nascent chains10,11. Here we describe the isolation of bovine Gamma-B Crystallin RNCs fused to SecM and generated in an in vitro translation system.  相似文献   

5.
Newly synthesized proteins leave the ribosome through a narrow tunnel in the large subunit. During ongoing synthesis, nascent protein chains are particularly sensitive to aggregation and degradation because they emerge from the ribosome in an unfolded state. In bacteria, the first protein to interact with nascent chains and facilitate their folding is the ribosome-associated chaperone trigger factor. Recently, crystal structures of trigger factor and of its ribosome-binding domain in complex with the large ribosomal subunit revealed that the chaperone adopts an extended 'dragon-shaped' fold with a large hydrophobic cradle, which arches over the exit of the ribosomal tunnel and shields newly synthesized proteins. These structural results, together with recent biochemical data on trigger factor and its interplay with other chaperones and factors that interact with the nascent chain, provide a comprehensive view of the role of trigger factor during co-translational protein folding.  相似文献   

6.
Focal brain ischemia leads to a slow type of neuronal death in the penumbra that starts several hours after ischemia and continues to mature for days. During this maturation period, blood flow, cellular ATP and ionic homeostasis are gradually recovered in the penumbral region. In striking contrast, protein synthesis is irreversibly inhibited. This study used a rat focal brain ischemia model to investigate whether or not irreversible translational inhibition is due to abnormal aggregation of translational complex components, i.e. the ribosomes and their associated nascent polypeptides, protein synthesis initiation factors and co-translational chaperones. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the cytoplasm of sham-operated control neurons, but clumped into large abnormal aggregates in penumbral neurons subjected to 2 h of focal ischemia followed by 4 h of reperfusion. The abnormal ribosomal protein aggregation lasted until the onset of delayed neuronal death at 24-48 h of reperfusion after ischemia. Biochemical study further suggested that translational complex components, including small ribosomal subunit protein 6 (S6), large subunit protein 28 (L28), eukaryotic initiation factors 2alpha, 4E and 3eta, and co-translational chaperone heat-shock cognate protein 70 (HSC70) and co-chaperone Hdj1, were all irreversibly clumped into large abnormal protein aggregates after ischemia. Translational complex components were also highly ubiquitinated. This study clearly demonstrates that focal ischemia leads to irreversible aggregation of protein synthesis machinery that contributes to neuronal death after focal brain ischemia.  相似文献   

7.
The eubacterial chaperonins GroEL and GroES are essential chaperones and primarily assist protein folding in the cell. Although the molecular mechanism of the GroEL system has been examined previously, the mechanism by which GroEL and GroES assist folding of nascent polypeptides during translation is still poorly understood. We previously demonstrated a co-translational involvement of the Escherichia coli GroEL in folding of newly synthesized polypeptides using a reconstituted cell-free translation system (Ying, B. W., Taguchi, H., Kondo, M., and Ueda, T. (2005) J. Biol. Chem. 280, 12035-12040). Employing the same system here, we further characterized the mechanism by which GroEL assists folding of translated proteins via encapsulation into the GroEL-GroES cavity. The stable co-translational association between GroEL and the newly synthesized polypeptide is dependent on the length of the nascent chain. Furthermore, GroES is capable of interacting with the GroEL-nascent peptide-ribosome complex, and experiments using a single-ring variant of GroEL clearly indicate that GroES association occurs only at the trans-ring, not the cis-ring, of GroEL. GroEL holds the nascent chain on the ribosome in a polypeptide length-dependent manner and post-translationally encapsulates the polypeptide using the GroES cap to accomplish the chaperonin-mediated folding process.  相似文献   

8.
In addition to its involvement in protein synthesis, the ribosome is implicated in protein folding. Some co-translational events, such as the rhythm of protein synthesis, the passage through the exit tunnel of the ribosome, or the interaction with ribosome-associated chaperones may help protein folding. Ribosomes from prokaryotes, eukaryotes, and mitochondria have also been shown to assist the folding of denatured proteins in vitro in a translation-independent way. This intriguing protein-folding activity of the ribosome (PFAR, also termed RPFA) has been mapped to the domain V of the large rRNA of the large subunit of the ribosome. Unfolded, newly synthesized proteins catalyze the dissociation of the two ribosomal subunits in vitro, thereby promoting ribosome recycling and facilitating accessibility of domain V to these proteins, which in turn may help their folding by PFAR. The recent identification of 6AP and GA - the two first drugs that specifically inhibit PFAR without affecting protein translation - will help decipher the biological significance of PFAR in vivo. Of note, 6AP and GA were initially isolated on the basis of their activity against prion-based diseases. Recently, 6AP and GA were also shown to be active in vivo in a drosophila model for oculopharyngeal muscular dystrophy, which is another amyloid-based disease. This effect is mimicked by large deletions in the ribosomal DNA (rDNA) locus. In addition, small deletions in the rDNA locus show a synergistic effect with low doses of 6AP and GA. Hence, PFAR may be involved in various amyloid-based diseases.  相似文献   

9.
tmRNA is a unique bi-functional RNA that acts as both a tRNA and an mRNA to enter stalled ribosomes and direct the addition of a peptide tag to the C terminus of nascent polypeptides. Despite a reasonably clear understanding of tmRNA activity, the reason for its absolute conservation throughout the eubacteria is unknown. Although tmRNA plays many physiological roles in different bacterial systems, recent studies suggest a general role for trans-translation in monitoring protein folding and perhaps other co-translational processes. This review will focus on these new hypotheses and the data that support them.  相似文献   

10.
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5′ region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.  相似文献   

11.
Biosynthesis of proteins – from translation to folding to export – encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC) system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER). A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.KEY WORDS: N-glycosylation, Glycoprotein folding, ER quality control, ER-associated degradation, ER export  相似文献   

12.
Members of the heat-shock protein (hsp) 70 family, distributed within various cellular compartments, have been implicated in facilitating protein maturation events. In particular, related hsp 70 family members appear to bind nascent polypeptides which are in the course of synthesis and/or translocation into organelles. We previously reported that in normal, unstressed cells, cytosolic hsp 70 (hsp 72/73) interacted transiently with nascent polypeptides. We suspect that such interactions function to prevent or slow down the folding of the nascent polypeptide chain. Once synthesis is complete, and now with all of the information for folding present, the newly synthesized protein appears to commence along its folding pathway, accompanied by the ATP-dependent release of hsp 72/73. Herein, we examined how these events occur in cells subjected to different types of metabolic stress. In cells exposed to either an amino acid analog or sodium arsenite, two potent inducers of the stress response, newly synthesized proteins bind to but are not released from hsp 70. Under these conditions of metabolic stress, we suspect that the newly synthesized proteins are unable to commence proper folding and consequently remain bound to their hsp 70 chaperone. In cells subjected to heat shock, a large number of both newly synthesized as well as mature proteins are rendered insoluble. Within this insoluble material are appreciable amounts of hsp 72/73. Finally, we show that in cells depleted of ATP, the release of hsp 70 from maturing proteins is inhibited. Thus, in cells experiencing metabolic stress, newly synthesized proteins unable to properly fold, as will as mature proteins which begin to unfold become stably bound to hsp 72/73. As a consequence and over time, the free or available levels of pre-existing hsp 72/73 are reduced. We propose that this reduction in the available levels of hsp 72/73 is the trigger by which the stress response is initiated.  相似文献   

13.
The endoplasmic reticulum (ER) represents the first compartment into which nascent secreted proteins traffic, and not coincidentally the ER lumen houses a high concentration of factors that facilitate protein folding, such as molecular chaperones. To off-set the potentially lethal consequences of mis-folded secreted protein accumulation, aberrant proteins may be selected for degradation via a process known as ER associated degradation (ERAD). After their selection ERAD substrates are retro-translocated back to the cytoplasm and then degraded by the 26S proteasome. Key features of the selection, retro-translocation, and degradation steps that constitute the ERAD pathway were elucidated through the development of an in vitro ERAD assay. In this assay the fates of two yeast proteins can be distinguished after their translocation, or import into ER-derived microsomes. Whereas a wild type, glycosylated protein ("Gp(alpha)F") is stable, a non-glycosylated version of the same protein ("p(alpha)F") is rapidly degraded when microsomes containing radiolabeled forms of these substrates are incubated in cytosol and ATP. The purpose of this chapter is first to discuss the experimental findings from the use of the in vitro assay, and then to describe the assay in detail. Finally, future potential uses of the in vitro system are illustrated.  相似文献   

14.
As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit and emerges at the solvent side where protein folding occurs. Despite the universality and conservation of dimensions of the ribosomal tunnel, a functional role for the ribosomal tunnel is only beginning to emerge: Rather than a passive conduit for the nascent chain, accumulating evidence indicates that the tunnel plays a more active role. In this article, we discuss recent structural insights into the role of the tunnel environment, and its implications for protein folding, co-translational targeting and translation regulation.  相似文献   

15.
《Journal of molecular biology》2019,431(7):1426-1439
During protein biosynthesis in bacteria, one of the earliest events that a nascent polypeptide chain goes through is the co-translational enzymatic processing. The event includes two enzymatic pathways: deformylation of the N-terminal methionine by the enzyme peptide deformylase (PDF), followed by methionine excision catalyzed by methionine aminopeptidase (MetAP). During the enzymatic processing, the emerging nascent protein likely remains shielded by the ribosome-associated chaperone trigger factor. The ribosome tunnel exit serves as a stage for recruiting proteins involved in maturation processes of the nascent chain. Co-translational processing of nascent chains is a critical step for subsequent folding and functioning of mature proteins.Here, we present cryo-electron microscopy structures of Escherichia coli (E. coli) ribosome in complex with the nascent chain processing proteins. The structures reveal overlapping binding sites for PDF and MetAP when they bind individually at the tunnel exit site, where L22–L32 protein region provides primary anchoring sites for both proteins. In the absence of PDF, trigger factor can access ribosomal tunnel exit when MetAP occupies its primary binding site. Interestingly, however, in the presence of PDF, when MetAP's primary binding site is already engaged, MetAP has a remarkable ability to occupy an alternative binding site adjacent to PDF. Our study, thus, discloses an unexpected mechanism that MetAP adopts for context-specific ribosome association.  相似文献   

16.
The capsid protein of Semliki Forest virus constitutes the N-terminal part of a large viral polyprotein. It consists of an unstructured basic segment (residues 1-118) and a 149 residue serine protease module (SFVP, residues 119-267) comprised of two beta-barrel domains. Previous in vivo and in vitro translation experiments have demonstrated that SFVP folds co-translationally during synthesis of the viral polyprotein and rapidly cleaves itself off the nascent chain. To test whether fast co-translation folding of SFVP is an intrinsic property of the polypeptide chain or whether folding is accelerated by cellular components, we investigated spontaneous folding of recombinant SFVP in vitro. The results show that the majority of unfolded SFVP molecules fold faster than any previously studied two-domain protein (tau=50 ms), and that folding of the N-terminal domain precedes structure formation of the C-terminal domain. This shows that co-translational folding of SFVP does not require additional cellular components and suggests that rapid folding is the result of molecular evolution towards efficient virus biogenesis.  相似文献   

17.
Continuous monitoring of the enzymatic activity of newly synthesized firefly luciferase in Escherichia coli cell-free translation system was performed to record folding kinetics of this multidomain eukaryotic protein in the prokaryotic cytosol. Whereas in vitro refolding of denatured luciferase in prokaryotic cytosol occurred with a low yield of active enzyme and took about an hour, the enzyme acquired its native structure immediately upon release from the ribosome, as seen from the immediate halt of active luciferase accumulation upon blocking of translation with inhibitors. The nascent luciferase was also capable of acquiring the active conformation prior to release from the ribosome, when its C terminus was extended with a polypeptide segment. Specific enzymatic activity of the firefly luciferase was found to be equally high irrespective of whether this protein was synthesized in eukaryotic or prokaryotic translation systems. The data presented demonstrate the fundamental ability of prokaryotic cytosol to support effective co-translational protein folding in general and co-translational folding of multidomain proteins in particular.  相似文献   

18.
The first events in the lives of proteins are the most hazardous. Starting at the ribosome, nascent polypeptides undergo complex folding processes endangered by aggregation reactions. Proteins with organellar destinations require correct targeting to the translocation machineries and prevention from premature folding. The high precision and speed of these processes is ensured by a cystosolic system consisting of molecular chaperones, folding catalysts and targeting factors. This review focuses on the interactions of this system with nascent polypeptides and discusses new concepts for protein folding in the cytosol. It is proposed that folding and targeting are promoted by a flexible network of multiple unassisted and assisted pathways.  相似文献   

19.
A proper balance between synthesis, maturation and degradation of cellular proteins is crucial for cells to maintain physiological functions. The costly process of protein synthesis is tightly coupled to energy status and nutrient levels by the mammalian target of rapamycin (mTOR), whereas the quality of newly synthesized polypeptides is largely maintained by molecular chaperones and the ubiquitin-proteasome system. There is a wealth of evidence indicating close ties between the nutrient signaling pathway and the intracellular stress response. Dysregulation of both systems has been implicated in aging and age-associated pathologies. In this review, we describe molecular mechanisms underlying the connection between mTOR and the chaperone network and discuss the importance of their functional interaction in growth and aging.Key words: target of rapamycin, stress response, ribosome, chaperone, translation, folding, degradation, aging  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号