首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的:探讨谷氨酰胺(Gln)对过度训练状态下心肌线粒体膜通透性转换孔(PTP)开放的干预作用及其可能机制。方法:30只SD大鼠随机分为3组(n=10):对照组(CG组)、过度训练组(OG组)和补充Gln+过度训练组(GOG组)。采用分光光度法检测大鼠心肌线粒体PTP开放程度,电化学法检测心肌丙二醛(MDA)、还原型谷胱苷肽(GSH)含量和磷脂酶A2(PLA2)活性。结果:OG组与GOG组比较,吸光度(A0)显著下降(P<0.05),吸光度变化(△A)值显著降低(P<0.05);荧光剂罗丹明123(Rh123)的荧光强度(F0)显著增强(P<0.05),Rh123荧光强度变化(△F)值明显降低(P<0.05)。与GOG组比较,线粒体GSH含量显著降低(P<0.05),PLA2活性显著增加(P<0.05);MDA含量显著升高(P<0.05)。结论:过度训练可导致心肌细胞线粒体PTP开放增加,过度训练状态下线粒体活性氧生成增多,PLA2活性增加及GSH的含量下降,补充外源性的Gln对这些变化有显著的干预作用。  相似文献   

2.
目的和方法:以C57BL/6J雄性小鼠跑转笼为运动方式,研究以5月龄开始进行为期8个月或15个月的运动训练对小鼠心肌线粒体能量转换功能的影响。结果:以α-酮戊二酸为底物时,线粒体RCR、ADP/O均呈现随年龄的增加而下降,尤其以衰老晚期(小鼠20月龄)下降明显。结论:衰老过程中氧化磷酸化偶联程度降低,能量产出减少,长期运动训练的小鼠心肌线粒体出现适应性变化,表现为线粒体功能随增龄而下降的程度减小。  相似文献   

3.
本实验初步观察了运动过程中大鼠体内锌的变化情况以及运动对大鼠心肌线粒体能量转换功能的影响。结果提示:一次力竭运动可使大鼠体内锌代谢发生改变,变化的原因可能与摄入不足、运动机体需要增加等有关。一定强度的运动训练不足以使心肌线粒体功能发生明显改变,但一次力竭性运动可以导致心肌线粒体膜的流动性发生明显变化,H+转运ATP酶活性明显降低。  相似文献   

4.
摘要 目的:探究不同组织细胞线粒体数量及功能的休克敏感性差异。方法:在整体和细胞水平模拟失血性休克和脓毒性休克模型,通过mtDNA检测、线粒体形态分析和线粒体ROS检测观察休克不同时相点肠组织(肠上皮细胞)、血管组织(血管平滑肌细胞)和心肌组织(心肌细胞)中线粒体数量和功能的变化。结果:对于失血性休克(缺氧)刺激,肠组织线粒体数量的休克敏感性明显强于血管和心肌组织(P<0.05)。肠、血管、心肌组织中线粒体数量明显增多分别开始于失血性休克后0.5小时、1小时和2小时。对于脓毒性休克(LPS)刺激,肠组织线粒体数量的休克敏感性明显弱于血管和心肌组织(P<0.05)。肠、血管、心肌组织中线粒体数量明显增多分别开始于脓毒性休克后9小时、6小时和3小时。只有高浓度长时间LPS刺激才会引起肠上皮细胞线粒体数量的明显增高。各组织细胞线粒体功能对各型休克刺激的敏感性和反应程度虽然存在差异,但都晚于线粒体数量异常的发生(P<0.05)。结论:各型休克的组织器官敏感性差异可能与不同组织细胞中线粒体的休克敏感性不同有关。线粒体数量异常增加是引起休克后线粒体损伤和细胞功能障碍的始动环节,不同组织细胞线粒体的休克敏感性差异也是影响休克组织器官损伤差异的重要原因之一。  相似文献   

5.
运动对大鼠休内锌代谢及H^+—转运ATP酶的影响   总被引:2,自引:0,他引:2  
本实验初步观察了运动过程中大鼠体内锌的变化情况以及运动对大鼠心肌线粒体能量转换功能的影响。结果提示:一次力褐运动可使大鼠体内锌代谢代发生改变,变化的原因可能与摄入不足、运动机体需要增加等有关。一定强度的运动训练不足以使心肌线粒体功能发生明显改变,但一次力竭性运动可以导致心肌线粒体膜的流动性发生明显变化,H^+转运ATP酶活性明显降低。  相似文献   

6.
目的:探讨竹节参对力竭运动大鼠心肌线粒体ATP酶活性的影响。方法:建立力竭运动大鼠模型,测定心肌线粒体ATP酶的活性,研究竹节参对大强度耐力训练大鼠心肌线粒体的保护作用。结果:力竭运动引起大鼠心肌线粒体ATPase(Na+,K+-ATPase和Ca2+-ATPase)活性显著下降,而运动加药组Ca2+-ATPase有显著升高,Na+,K+-ATPase也有明显升高,且ATPase活性均接近于安静对照组的水平。结论:竹节参可提高力竭运动大鼠心肌线粒体内Na+,K+-ATP酶和Ca2+-ATP酶的活性,提示其具有保护线粒体的作用。  相似文献   

7.
目的:考察不同负荷运动训练对小鼠心肌凋亡相关miR-1,miR-21和靶蛋白的影响,探讨运动干预心肌凋亡的可能机制。方法:选取21只C57BL/6小鼠,随机分为3组(n=7):安静组(SE组)、训练1组(ET1组)、训练2组(ET2)。SE组不进行训练,ET1组完成8周递增负荷游泳训练,5天/周,1次/天,第1周30 min/count,每周增加10 min,第7、8周时间维持在90 min;ET2组在ET1组方案基础上增加负荷,前5周与ET1相同,后3周每天训练2次。TUNEL检测考察心肌凋亡水平,Western blot和RT-PCR分别测定蛋白和miRs的变化。结果:ET1组游泳训练对小鼠心肌凋亡影响不明显,miR-1表达无显著变化,但其靶蛋白Bcl-2表达显著增高(P<0.01),miR-21及其靶蛋白PDCD4表达均无显著变化。ET2组游泳训练显著降低心肌凋亡水平及miR-1表达(P<0.01)、提高Bcl-2表达(P<0.05);同时显著提高miR-21表达(P<0.05),但对PDCD4表达无明显影响。结论:ET1组训练对心肌凋亡干预不明显,ET2组运动训练可降低心肌凋亡水平,miR-1及靶蛋白Bcl-2变化可能是机制之一,PDCD4对运动训练不敏感,miR-21可能与其它靶蛋白参与运动干预心肌凋亡的分子机制。  相似文献   

8.
目的观察Wnt信号通路中β-catenin及其下游靶基因WISP~1在糖尿病大鼠心肌组织中的表达,分析Wnt/β-catenin信号通路在糖尿病大鼠心肌损伤中的作用。方法雄性SD大鼠随机分为正常对照组(Control Group)和糖尿病模型组(DMGroup),腹腔注射STZ55mg/kg诱导糖尿病大鼠模型,喂养至8周。测定大鼠的空腹血糖、心体比和心肌羟脯氨酸含量;电镜观察心肌超微结构变化,免疫组化法观察心肌组织β-catenin和WISP-1的表达。结果与对照组相比,糖尿病组大鼠空腹血糖水平明显增加,心体比增加,心肌羟脯氨酸含量增高。心肌超微结构显示肌纤维断裂,线粒体呈空泡样改变。心肌β-catenin和WISP-1蛋白表达增加。结论糖尿病大鼠心肌组织β-catenin和其下游靶基因WISP-1表达增加,提示Wnt/β-catenin信号通路的激活参与糖尿病所致的心肌损伤。  相似文献   

9.
目的:探讨一次和反复力竭性运动后不同时相大鼠血清肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)与心肌损伤的变化规律。方法:通过力竭性游泳制备运动性心肌损伤模型,分别于运动后即刻和3 h6、h、12 h2、4 h4、8 h、96 h检测血清CK、CK-MB活性,并观察心肌组织形态学的动态变化。结果:大鼠一次力竭运动后0~12 h,CK和CK-MB活性明显增加,6 h达高峰;心肌炎细胞浸润灶逐渐增多,胞质嗜酸性增强,损伤高峰在12 h左右。反复力竭运动后0~12 h和48 h9、6 h CK和CK-MB活性皆明显增加,分别于运动后即刻和96 h达高峰;心肌细胞均有不同程度的损伤,48 h最严重。结论:过度运动和/或力竭性运动皆引起运动性心肌损伤,同时存在延迟性心肌损伤。  相似文献   

10.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

11.
Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-1ike sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-1ike sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes, Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EM F2NRN2 divergence in accordance with species relationship. Existence of EMF2-1ike sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate seque  相似文献   

12.
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclearencoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V/itorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.  相似文献   

13.
Impacts of salinity become severe when the soil is deficient in oxygen. OxygaUon (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m ECe. In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na^+ and CI^- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na^+ or CI^- concentration. Oxygation invariably increased, whereas salinity reduced the K^+: Na^+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.  相似文献   

14.
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.  相似文献   

15.
The early evolution of angiosperms has been a focus of intensive research for more than a century. The Yixian Formation in western Liaoning yields one of the earliest angiosperm macrofioras. Despite multitudes of angiosperm fossils uncovered, including Archaefructus and Sinocarpus, no bona fide normal flower has been dated to 125 Ma (mega-annum) or older. Here we report Callianthus dilae gen. et sp. nov. from the Yixian Formation (Early Cretaceous) in western Liaoning, China as the earliest normal flower known to date. The flower demonstrates a typical floral organization, including tepals, androecium, and gynoecium. The tepals are spatulate with parallel veins. The stamens have a slender filament, a globular anther, bristles at the anther apex, and in situ round-triangular pollen grains. The gynoecium is composed of two stylate carpels enclosed in a fleshy envelope, and develops into a "hip" when mature. Since the well-accepted history of angiosperms is not much longer than 125 Ma, Callianthus together with Chaoyangia, Archaefructus and Sinocarpus from the Yixian Formation demonstrate a surprisingly high diversity of angiosperms, implying a history of angiosperms much longer than currently accepted.  相似文献   

16.
17.
D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xyiose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg^2+. At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 μmol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.  相似文献   

18.
Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F685/F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.  相似文献   

19.
20.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号