首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The eye is an excellent model for the study of neuronal development and pathogenesis of central nervous system disorders because of its relative ease of accessibility and the well‐characterized cellular makeup. We have used this model to study spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease caused by deletions or mutations in the survival of motor neuron 1 gene (SMN1). We have investigated the expression pattern of mouse Smn mRNA and protein in the neural retina and the optic nerve of wild type mice. Smn protein is present in retinal ganglion cells and amacrine cells within the neural retina as well as in glial cells in the optic nerve. Histopathological analysis in phenotype stage SMA mice revealed that Smn deficiency is associated with a reduction in ganglion cell axon and glial cell number in the optic nerve, as well as compromised cellular processes and altered organization of neurofilaments in the neural retina. Whole mount preparation and retinal neuron primary culture provided further evidence of abnormal synaptogenesis and neurofilament accumulation in the neurites of Smn‐deficient retinal neurons. A subset of amacrine cells is absent, in a cell‐autonomous fashion, in the retina of SMA mice. Finally, the retinas of SMA mice have altered electroretinograms. Altogether, our study has demonstrated defects in axodendritic outgrowth and cellular composition in Smn‐depleted retinal neurons, indicating a role for Smn in neuritogenesis and neurogenesis, and providing us with an insight into pathogenesis of SMA. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 153‐169, 2011  相似文献   

2.
The cell nucleus contains two closely related structures, Cajal bodies (CBs) and gems. CBs are the first site of accumulation of newly assembled splicing snRNPs (small nuclear ribonucleoproteins) following their import into the nucleus, before they form their steady-state localization in nuclear splicing speckles. Gems are the nuclear site of accumulation of survival motor neurons (SMNs), an insufficiency of which leads to the inherited neurodegenerative condition, spinal muscular atrophy (SMA). SMN is required in the cytoplasm for the addition of core, Sm, proteins to new snRNPs and is believed to accompany snRNPs to the CB. In most cell lines, gems are indistinguishable from CBs, although the structures are often separate in vivo . The relationship between CBs and gems is not fully understood, but there is evidence that symmetrical dimethylation of arginine residues in the CB protein coilin brings them together in HeLa cells. During neuronal differentiation of the human neuroblastoma cell line SH-SY5Y, CBs and gems increase their colocalization, mimicking changes seen during foetal development. This does not result from alterations in the methylation of coilin, but from increased levels of SMN. Expression of exogenous SMN results in an increased efficiency of snRNP transport to nuclear speckles. This suggests different mechanisms are present in different cell types and in vivo that may be significant for the tissue-specific pathology of SMA.  相似文献   

3.
《Neuron》2023,111(9):1423-1439.e4
  1. Download : Download high-res image (223KB)
  2. Download : Download full-size image
  相似文献   

4.
Spinal muscular atrophy (SMA) is a neurodegenerative disorder resulting from homozygous loss of the SMN1 gene. To investigate SMN functions, we undertook the yeast two-hybrid screens and identified Drosophila Rpp20, a subunit of the RNase P and RNase MRP holoenzymes, to interact with the Drosophila SMN protein. Interaction between human SMN and Rpp20 was validated by in vitro binding assays and co-immunoprecipitation. The exons 3-4 of SMN are necessary and sufficient for binding to Rpp20. Binding efficiency between Rpp20 and SMNs with mutations in the Y-G domain is abrogated or reduced and correlated with severity of SMA disease. Immunofluorescence results indicate that Rpp20 is diffusely distributed throughout the cytoplasm with higher concentration observed in the nucleus. However, in response to stress, SMN forms aggregates and redistributes Rpp20 into punctuated cytoplasmic SMN granules. Our findings suggest a possible functional association of SMN with RNase P and RNase MRP complexes.  相似文献   

5.
6.
陈万金  张奇杰  何瑾  林翔  王柠 《遗传》2014,36(11):1168-1172
脊髓性肌萎缩症(Spinal muscular atrophy, SMA)大多数在儿童或婴幼儿期发病,表现为进行性、对称性的肢体无力和肌肉萎缩,迄今尚无有效的治疗方法,是婴幼儿最常见的致死性遗传病之一。患者来源的细胞系是该病研究的重要工具,但依赖于肌肉或皮肤活检等创伤性手术的成纤维细胞培养较难被患者及家属接受。文章收集SMA患者及健康对照的新鲜尿液,进行离心、尿液沉渣培养,观察尿液细胞的生长状况,用酶联免疫吸附实验(Enzyme-linked immunosorbent assay,ELISA)分析患者尿液细胞中SMN(Survival of motor neuron)蛋白的表达量,应用免疫荧光染色观察SMN蛋白在细胞内的定位。共建立了11例SMA患者和14例健康对照的尿液细胞系,尿液细胞体外增殖旺盛,细胞形态及生长速度较稳定。患者来源的尿液细胞SMN1(Survival of motor neuron 1) 基因缺失突变、SMN蛋白表达量降低,荧光染色提示SMN蛋白在胞浆和胞核中均有定位。尿液细胞培养步骤简单、无创伤性、患儿及其家属的依从性好,是获取和保存病人来源标本的有效方法,在脊髓性肌萎缩症发病机制研究和临床应用方面具有较好的应用价值。  相似文献   

7.
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.  相似文献   

8.
Reduced expression of SMN causes spinal muscular atrophy, a severe neurodegenerative disease. Despite the importance of maintaining SMN levels, relatively little is known about the mechanisms by which SMN levels are regulated. We show here that Gemin5, the snRNA-binding protein of the SMN complex, binds directly to the SMN mRNA and regulates SMN expression. Gemin5 binds with high specificity, both in vitro and in vivo, to sequence and structural elements in the SMN mRNA 3′-untranslated region that are reminiscent of the snRNP code to which Gemin5 binds on snRNAs. Reduction of Gemin5 redistributes the SMN mRNA from heavy polysomes to lighter polysomes and monosomes, suggesting that Gemin5 functions as an activator of SMN translation. SMN protein is not stoichiometrically present on the SMN mRNA with Gemin5, but the mRNA-binding activity of Gemin5 is dependent on SMN levels, providing a feedback mechanism for SMN to regulate its own expression via Gemin5. This work both reveals a new autoregulatory pathway governing SMN expression, and identifies a new mechanism through which SMN can modulate specific mRNA expression via Gemin5.  相似文献   

9.
Gemins 2-8 and Unr-interacting protein (UNRIP) are intimate partners of the survival motor neuron (SMN) protein, which is the determining factor for the neuromuscular disorder spinal muscular atrophy (SMA). The most documented role of SMN, Gemins and UNRIP occurs within the large macromolecular SMN complex and involves the cytoplasmic assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs), a housekeeping process critical in all cells. Several reports detailing alternative functions for SMN in either motor neurons or skeletal muscles may, however, hold the answer to the extreme neuromuscular tissue specificity observed in SMA. Recent discoveries indicate that collaboration between SMN and Gemins also extends to these non-canonical functions, hence raising the possibility that mutations in Gemin genes may be the cause of unlinked neuromuscular hereditary syndromes. This review evaluates the functions of Gemins and UNRIP inside the SMN complex and discusses whether these less notorious SMN complex members are capable of acting independently of SMN.  相似文献   

10.
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50?=?8.3?µM. A structure-activity relationship (SAR) study revealed that the array of tolerated substituents, on either the benzo portion of the quinolinone or the 4-phenyl, was very narrow. However, the lactam ring of the quinolinone was more amenable to modifications. For example, the quinazolinone (9a) and the benzoxazepin-2(3H)-one (19) demonstrated improved potency and efficacy for increase in SMN2 expression as compared to 2.  相似文献   

11.
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.  相似文献   

12.
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.  相似文献   

13.
14.
Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder. However, two murine models of SMA have been generated using SMN2-BAC transgenic mice bred onto a mutant Smn background. In these instances mice die shortly after birth, have variable phenotypes within the same litter, or completely correct the SMA phenotype. Both models have been imported to The Jackson Laboratory for distribution to the research community. To ensure that similar results are obtained after importation to The Jackson Laboratory to what was originally reported in the literature, we have begun a molecular and phenotypic evaluation of these mouse models. Here we report our findings for the SMA mouse model that has been deposited by the Li group from Taiwan. These mice, JAX stock number TJL-005058, are homozygous for the SMN2 transgene, Tg(SMN2)2Hung, and a targeted Smn allele that lacks exon 7, Smn1tm1Hung. Our findings are consistent with those reported originally for this line and clarify some of the original data. In addition, we have cloned and mapped the integration site for Tg(SMN2)2Hung to Chromosome 4, and provide a simple genotyping assay that is specific to the junction fragment. Finally, based upon the survival data from our genetic crosses, we suggest that this underused SMA model may be a useful compliment or alternative to the more commonly used “delta7” SMA mouse. We provide breeding schemes in which two genotypes of mice can be generated so that 50% of the litter will be SMA-like pups while 50% will be controls.  相似文献   

15.
Spinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs. Here, we have performed a genome-wide analysis of RNAs present in complexes containing the SMN protein and identified more than 200 mRNAs associated with SMN in differentiated NSC-34 motor neuron-like cells. Remarkably, ∼30% are described to localize in axons of different neuron types. In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in an SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis.  相似文献   

16.
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ‐binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre‐clinical therapeutic strategies in humans.  相似文献   

17.
Spinal muscular atrophy (SMA) is a recessive neuromuscular disorder caused by loss of the SMN1 gene. The clinical distinction between SMA type I to IV reflects different age of onset and disease severity. SMN2, a nearly identical copy gene of SMN1, produces only 10% of full-length SMN RNA/protein and is an excellent target for a potential therapy. Several clinical trials with drugs that increase the SMN2 expression such as valproic acid and phenylbutyrate are in progress. Solid natural history data for SMA are crucial to enable a correlation between genotype and phenotype as well as the outcome of therapy. We provide genotypic and phenotypic data from 115 SMA patients with type IIIa (age of onset <3 years), type IIIb (age of onset >3 years) and rare type IV (onset >30 years). While 62% of type IIIa patients carry two or three SMN2 copies, 65% of type IIIb patients carry four or five SMN2 copies. Three type IV SMA patients had four and one had six SMN2 copies. Our data support the disease-modifying role of SMN2 leading to later onset and a better prognosis. A statistically significant correlation for ≥4 SMN2 copies with SMA type IIIb or a milder phenotype suggests that SMN2 copy number can be used as a clinical prognostic indicator in SMA patients. The additional case of a foetus with homozygous SMN1 deletion and postnatal measurement of five SMN2 copies illustrates the role of genotypic information in making informed decisions on the management and therapy of such patients.Database: SMN1—OMIM: 600354; GeneBank: U18423, SMN2—OMIM: 601627: GeneBank: NM_022875  相似文献   

18.
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons of the spinal cord associated with muscle paralysis and caused by mutations of the survival motor neuron gene (SMN). To determine whether SMN gene defect in skeletal muscle might have a role in SMA pathogenesis, deletion of murine SMN exon 7, the most frequent mutation found in SMA, has been restricted to skeletal muscle by using the Cre-loxP system. Mutant mice display ongoing muscle necrosis with a dystrophic phenotype leading to muscle paralysis and death. The dystrophic phenotype is associated with elevated levels of creatine kinase activity, Evans blue dye uptake into muscle fibers, reduced amount of dystrophin and upregulation of utrophin expression suggesting a destabilization of the sarcolemma components. The mutant mice will be a valuable model for elucidating the underlying mechanism. Moreover, our results suggest a primary involvement of skeletal muscle in human SMA, which may contribute to motor defect in addition to muscle denervation caused by the motor neuron degeneration. These data may have important implications for the development of therapeutic strategies in SMA.  相似文献   

19.
Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated-neurofilament heavy chain (p-NfH) and neurofilament light chain (NfL) are neuron-specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p-NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p-NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut-off values of 0.652 ng/mL for CSF p-NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.  相似文献   

20.
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号