首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of pentachlorophenol in treated timber, after inoculation with pentachlorophenol-degrading bacterial species,Rhodococcus chlorophenolicus andFlavobacterium sp., and the white-rot fungusPhanerochaete chrysosporium, was monitored in solid substrate systems and in liquid culture suspensions. In solid substrate systems there was no significant pentachlorophenol degradation by the bacterial species under a variety of conditions. Under similar conditions,Phanerochaete chrysosporium transformed over 80% of the starting concentration of 500 ppm to pentachloroanisole. In liquid culture suspensions however, mid-exponential phaseFlavobacterium sp. cells were able to degrade over 99% of the pentachlorophenol in sawdust and wood chips due to the extraction of PCP from the timber as a water soluble salt. There were however no significant changes in the chlorinated dioxin components during this treatment.Abbreviations ATTC American type culture collection - AWPA American Wood Preservers' Association - DSM Deutsche Sammlung für Mikroorganismen - GC/MS gas chromatograph/mass spectrometer - HpCDD heptachlorodibenzo-p-dioxin - HpCDF heptachlorodibenzofuran - HxCDD hexachlorodibenzo-p-dioxin - HxCDF hexachlorodibenzofuran - 13C-OCDD carbon 13-labelled octachlorodibenzo-p-dioxin - OCDD octachlorodibenzo-p-dioxin - OCDF octachlorodibenzofuran - PCDDs polychlorinated dibenzo-p-dioxins - PCDFs polychlorinated dibenzofurans - PCP pentachlorophenol - PnCDD pentachlorodibenzo-p-dioxin - PnCDF pentachlorodibenzofuran - TCDD tetrachlorodibenzo-p-dioxin - TCDF terachlorodibenzofuran - TeCP tetrachlorophenol - WHC water holding capacity - w/v weight for volume ratio  相似文献   

2.
Rhodococcus chlorophenolicus PCP-1, a mineralizer of polychlorinated phenols, was inoculated into natural sandy loam and peaty soils with pentachlorophenol (PCP) at concentrations usually found at lightly and heavily polluted industrial sites (30 to 600 mg PCP/kg). A single inoculum of 105 to 108 cells per g of peat soil and as little as 500 cells/g sandy soil initiated mineralization of14C-PCP. The mineralization rates of PCP were 130 to 250 mg mineralized per kg soil in 4 months in the heavily (600 mg/kg) polluted soils and 13 to 18 mg/kg in the lightly (30 mg/kg) polluted soils. There were no detectable PCP mineralizing organisms in the soils prior to inoculation, and also there was no significant adaptation of the indigenous microbial population to degrade PCP during 4 months observation in the uninoculated soils. The inoculum-induced mineralization continued for longer than 4 months after a single inoculation. Uninoculated, lightly polluted soils (30 mg PCP/kg) also showed loss of PCP, but some of this reappeared as pentachloroanisol and other organic chlorine compounds (EOX). Such products did not accumulate in theR. chlorophenolicus-inoculated soils, where instead EOX was mineralized 90 to 98%.R. chlorophenolicus mineralized PCP unhindered by the substrate competition offered by the PCP-methylating bacteria indigenously occurring in the soils or by simultaneously inoculated O-methylatingR. rhodochrous.  相似文献   

3.
Dechlorination (para-hydroxylation) of pentachlorophenol (PCP) and tetrachloro-para-hydroquinone (TeCH) and O-methylation of TeCH were demonstrated in cell extracts of Rhodococcus chlorophenolicus PCP-I. PCP para-hydroxylating activity was membrane bound, whereas TeCH dechlorinating enzyme was soluble. The PCP para-hydroxylating enzyme was solubilized by Triton X-100 and the requirement for both FAD and NADPH was shown. The dechlorinating activities were inducible in contrast to the constitutive TeCH O-methylating activity. The PCP para-hydroxylation was inhibited by its product TeCH, by anoxic conditions, and by different inhibitors of P450. Participation of this cytochrome in the PCP hydroxylation was confirmed by the appearance of a carbon monoxide dependent peak of absorbance at 457 nm in the membrane fraction prepared from PCP degrading cells.  相似文献   

4.
Pseudomonas sp. strain IST103 obtained from a stable consortium was capable of degrading pentachlorophenol (PCP) as sole carbon and energy source. The PCP-degrading potentiality of the strain was determined by growth of bacteria in culture medium, utilization of PCP by high performance liquid chromatography (HPLC), chloride release and ring cleavage. The strain was applied in two set of soil microcosms containing 20 and 40% moisture, each having different concentrations, 0, 10, 100, 500, and 1000 mg/l, of PCP. The result showed significant utilization of PCP (77% in 45 days) and higher growth of bacterial strain when PCP was applied in 100 mg/l concentration at 40% moisture. Inhibitory effects on the growth of bacterial strain were seen in 500 and 1000 mg/l concentration.  相似文献   

5.
A pentachlorophenol (PCP)-degrading mixed bacterial population was enriched in a biofilter filled with soft wood bark chips. We found that bark chips were essential for the degradation to proceed at PCP concentrations higher than 10M. PCP-degrading bacteria were found to be extremely sensitive to PCP. Bark chips absorbed PCP reversibly, thus detoxifying the medium and allowing degradation to proceed at higher concentrations of PCP (beyond 200M).  相似文献   

6.
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.  相似文献   

7.
Summary An actinomycete, Rhodococcus chlorophenolicus, isolated from a pentachlorophenol-degrading mixed bacterial culture is a polychlorophenol degrader. It was shown to oxidize pentachlorophenol into carbon dioxide and to metabolize also 2,3,4,5-,2,3,4,6-, and 2,3,5,6-tetrachlorophenol, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6-, and 2,4,5-trichlorophenol, 2,5-, and 2,6-dichlorophenol and tetrachloro-p-hydroquinone in an inducible manner. Pentachlorophenol set on the synthesis of enzymes required for the metabolism of all these chlorophenols and of tetrachloro-p-hydroquinone. 2,4,5-, and 2,4,6-trichlorophenol and 2,5-, and 2,6-dichlorophenol were degraded by R. chlorophenolicus cells only if these had previous contact to pentachlorophenol. Other chlorophenols mentioned were able to set on the synthesis of enzymes for their own degradation. 2,3,4,5-, and 2,3,4,6-tetrachlorophenol, and 2,3,5-, 2,4,5-, and 3,4,5-trichlorophenol were more toxic to R. chlorophenolicus than the other chlorophenols, but nevertheless 2,3,4,5-, and 2,3,4,6-tetrachlorophenol and 2,3,5-trichlorophenol were readily degraded by the bacteria.Abbreviations DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol - PCP pentachlorophenol - TeCH tetrachloro-p-hydroquinone An example of numeration: 2345-TeCP, 2,3,4,5-tetrachlorophenol  相似文献   

8.
Five Pseudomonas species were tested for ability to degrade pentachlorophenol (PCP). Pseudomonas aeruginosa completely degraded PCP up to 800 mg/l in 6 days with glucose as co-substrate. With 1000 mg PCP/l, 53% was degraded. NH4 + salts were better at enhancing degradation than organic nitrogen sources and shake-cultures promoted PCP degradation compared with surface cultures. Degradation was maximal at pH 7.6 to 8.0 and at 30 to 37°C. Only PCP induced enzymes that degraded PCP and chloramphenicol inhibited this process. The PCP was degraded to CO2, with release of Cl-.The authors are with the Bacteriology Laboratory, Central Leather Research Institute, Madras-600 020, India.  相似文献   

9.
Summary The lignin-degrading fungiPhanerochaete chrysosporium, P. sordida, Trametes hirsuta, andCeriporiopsis subvermispora were evaluated for their ability to decrease the concentration of pentachlorophenol (PCP) and to cause dry weight loss in PCP-treated wood. Hardwood and softwood materials from PCP-treated ammunition boxes that were chipped to pass a 3.8-cm screen were used. All four fungi caused significant weight losses and decreases in the PCP concentration. The largest PCP decrease (84% in 4 weeks) was caused byT. hirsuta, and the smallest decrease was caused byC. subvermispora (37% in 4 weeks). After 4 weeks, the fate of spiked14C[PCP] in softwood chips inoculated withT. hirsuta was as follows: 27% was mineralized, 42.5% was non-extractable and bound to the chips, 23.5% was associated with fungal hyphae, and 6% was organic-extractable. Decreases of PCP byP. chrysosporium andP. sordida averaged 59% and 57%, respectively. PCP decreases caused byPhanerochaete spp. were not significantly affected by wood type or sterilization and were primarily due to methylation of PCP that resulted in accumulation of pentachloroanisole. Softwood weight losses caused byT. hirsuta, P. chrysosporium andC. subvermispora were respectively, 24, 6.5, and 17%, after 4 weeks. These weight losses are comparable to reported weight losses by these organisms in non-treated softwood. Nutrient supplementation significantly increased weight loss but not percentage decrease of PCP. The results of this research demonstrate the potential for using lignin-degrading fungi to destroy PCP-treated wood.  相似文献   

10.
Summary The ability of tropical Brazilian basidiomycetes to degrade pentachlorophenol (PCP) in soils from areas contaminated with organochlorine industrial residues was studied. Thirty-six basidiomycetes isolated from different tropical ecosystems were tested for tolerance to high PCP concentrations in soil. Peniophoracinereaand Psilocybecastanella, two strains of Trametes villosa,Agrocybe perfecta, Trichaptum bisogenumand Lentinus villosuswere able to colonize soil columns containing up to 4600 mg pentachlorophenol kg−1soil. The first four species were inoculated into soil containing 1278 mg pentachlorophenol kg−1 soil supplemented with gypsum and sugar cane bagasse. P. cinerea,P.castanella, T. villosaCCB176 and CCB213 and Agrocybe perfectareduced the PCP present in the contaminated soil by 78, 64, 58, 36 and 43%, respectively, after 90 days of incubation. All fungi mineralized [14C] pentachlorophenol, mainlyP. cinereaandT. villosawith the production of 7.11 and 8.15% 14CO2, respectively, during 120 days of incubation. All fungi produced chloride ions during growth on soil containing PCP, indicating dehalogenation of the molecule. Conversion of PCP to pentachloroanisole was observed only after 90 days of incubation in soils inoculated with A. perfecta, P.cinereaand one of T. villosastrain. The present study shows the potential of Brazilian fungi for the biodegradation of toxic and persistent pollutants and it is the first to report fungal growth and PCP depletion in soils with high pentachlorophenol concentrations.  相似文献   

11.
Rhizopus nigricans, isolated from an industrial effluent (paper mill), was resistant to pentachlorophenol (PCP) in Petri dishes and in submerged cultures (100 and 25 mg l–1 respectively). It was shown that this strain of R. nigricans can remove PCP in submerged culture. When 12.5 mg of PCPl–1 were added at 48 h, this compound had been completely removed by 144h. Results indicated that the fungus did not produce extracellular lignin peroxidase (LiP) and laccase, but extracellular phenoloxidase production was observed. The synthesis of the latter enzyme was stimulated by the presence of PCP and/or tyrosine. These results indicate that this fungus, and probably other filamentous fungi, have an interesting potential to be used in processes for chlorophenol biodegradation.  相似文献   

12.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

13.
Large inputs of atmospheric N from dry deposition accumulate on vegetation and soil surfaces of southern Californian chaparral and coastal sage scrub (CSS) ecosystems during the late-summer and early-fall and become available as a pulse following winter rainfall; however, the fate of this dry season atmospheric N addition is unknown. To assess the potential for dry season atmospheric N inputs to be incorporated into soil and/or vegetation N pools, an in situ N addition experiment was initiated in a post-fire chaparral and a mature CSS stand where 10 × 10 m plots were exposed to either ambient N deposition (control) or ambient +50 kg N ha−1 (added N) added as NH4NO3 during a single application in October 2003. After 1 year of N addition, plots exposed to added N had significantly higher accumulation of extractable inorganic N (NH4−N + NO3−N) on ion exchange resins deployed in the 0–10 cm mineral soil layer and higher soil extractable N in the subsurface (30–40 cm) mineral soil than plots exposed to ambient N. Chaparral and CSS shrubs exposed to added N also exhibited a significant increase in tissue N concentration and a decline in the tissue C:N ratio, and added N significantly altered the shrub tissue δ 15N natural abundance. Leaching of inorganic N to 1 m below the soil surface was on average 2–3 times higher in the added N plots, but large within treatment variability cause these differences to be statistically insignificant. Although a large fraction of the added N could not be accounted for in the shrub and soil N pools investigated, these observations suggest that dry season N inputs can significantly and rapidly alter N availability and shrub tissue chemistry in Mediterranean-type chaparral and CSS shrublands of southern California.  相似文献   

14.
A bacterial community obtained by continuous enrichment from the microbial population of tannery effluent using pentachlorophenol (PCP) as sole source of carbon and energy, contained four different bacterial species including Serratia marcescens (three isolates, TE1, TE2 and TE4) and Pseudomonas fluorescens (one isolate, TE3). The members of the community grew separately on various chlorinated compounds, carbon and nitrogen sources and exhibited a remarkable ability to utilize PCP. Biodegradation studies revealed a time-dependent disappearance of PCP and its intermediary metabolites, tetrachloro-p-hydroquinone and chlorohydroquinone, and indicated the individual role of members of the community in the degradation of PCP.  相似文献   

15.
One-year-old Prunus avium L. were grown under greenhouse conditions in a Countesswells soil in all combinations of 2 pH and 2 P levels. The soil, obtained from a long-term liming and fertilizer experiment, provided pH values throughout the experiment of 3.75–3.99 (pH 1) and 4.81–5.41 (pH 2). The P treatments had 0.43% acetic acid extractable P of 31–44 g g-1 (P1) and 145–173 g g-1 (P2). The trees were harvested 92 (H1), 134 (H2), and 168 (H3) days after initiation of growth.Top (leaf+new stem) dry weight was significantly increased for pH 2 and P2 at H2 and H3. P2 also increased leaf weight (H1), the weight of the original stem-root (H2 and H3), and root length but decreased root diameter at both soil pHs (H2 and H3). Total tree uptake of N, P, K, Ca, and Mg was also increased by pH-P combinations which had significantly greater dry matter production and root length. Total Mn uptake decreased at pH2. Root nutrient inflows (uM m-1 day-1) were increased for Ca at pH2 and for P at P2. Mn inflow decreased at pH2 and at pH1 P2 although the increased root length associated with the latter treatmen resulted in increased total tree Mn uptake. In general, high nutrient inflows occurred in all trees at H1 and in severely stunted trees at pH1 P1; both had larger than average root diameters.  相似文献   

16.
Nitrogen mineralization, nitrification potentials, pH, total N, C, extractable P and cations were measured in soils under 4-year-old, mono-specific stands of six fast-growing, native tree species, an abandoned pasture, and a 20-year-old secondary forest, as part of a study on the use of indigenous tree species for rehabilitation of soil fertility on degraded pastures at the La Selva Biological Station in the Atlantic humid lowlands of Costa Rica. Soil net nitrification potential rates were higher under two N-fixing, leguminous species,Stryphnodendron microstachyum Poepp. et Endl. (1.1–1.9 mg kg–1 day–1) andDalbergia tucurensis Donn. Smith (0.7–1.5 mg kg–1 day–1), than under the non-N-fixing trees in the plantation,Vochysia guatemalesis Don. Sm.,Vochysia ferruginea Mart,Dipteryx panamensis (Pittier) Record and Mell andHyeronima alchorneoides Fr. Allemao (0.2–0.8 mg kg–1 day–1). Values under the N-fixing trees were comparable to those found in secondary forest. There were no statistically significant differences in soil total N or in other nurtients between the species. Results of pH measurements done before and after incubation did not show any clear evidence of a pH drop attributable to nitrification.  相似文献   

17.
The gene (vgb) encoding the hemoglobin (VHb) ofVitreoscilla sp. was cloned intoBurkholderia sp. and the effect of VHb on the growth characteristics of genetically engineeredBurkholderia (YV1) were compared with wild typeBurkholderia (R34) using continuous flow reactors (chemostat) at various dilution rates under aerobic conditions. Batch oxygen uptake rate showed that YV1 has much higher oxygen uptake rate than R34 (i.e. 0.63 mg O2/g biomass/min vs. 1.43 mg O2/g biomass/min for R34 and YV1 respectively at a dilution rate of 1.2 day−1). Monod parameters, maximum growth rate (μmax) and half saturation coefficient (Ks) were found to be 7.03 day−1 and 691 mg/L for R34 respectively, compared to 5.49 day−1 and 404 mg/L for YV1 respectively. At low dilution rates (<2.5 day−1), when the substrate is present in low concentrations, the growth yield was much higher in YV1 (0.52) than in R34 (0.37). Although substrate utilization rates were similar between R34 and YV1, the latter showed much higher oxygen uptake rate than did R34 at all dilution rates. When the stability of VHb was tested on agar plates containing 40 μg/L of kanamycin and 100 μg/L of ampicillin,vgb gene containing VHb plasmid in YV1 was stable over 82 days. When survivability under oxygen limited conditions was tested, R34 survived only for 11 days whereas YV1 survived over 25 days in liquid media; in agar plate experiments, R34 did not survive more than 40 days whereas more than 75% of YV1 survived over 110 days.  相似文献   

18.
A bacterial strain capable of utilizing pentachlorophenol (PCP) as sole source of carbon and energy for growth was isolated from enrichment cultures containing 100 mg/l PCP in a mineral salts medium inoculated with contaminated soil from a lumber treatment waste site. The isolate, designated strain SR3, was identified as a species ofPseudomonas by virtue of its physiological and biochemical characteristics. Mineralization of PCP byPseudomonas sp. strain SR3 was demonstrated by loss of detectable PCP from growth medium, stoichiometry of chloride release (5 equivalents of chloride per mole of PCP), and formation of biomass consistent with the concentration of PCP mineralized. PCP-induced cells of strain SR3 showed elevated rates of oxygen consumption in the presence of PCP, and with different chlorinated phenols, with complete degradation of 2,3,5,6-, 2,3,6-, 2,4,6-, 2,4-, and 2,6-chloro-substituted phenols. Concentrations of PCP up to 175 mg/liter supported growth of this organism, but maximal rates of PCP removal were observed at a PCP concentration of 100 mg/liter. Based on its degradative properties,Pseudomonas sp. strain SR3 appears to have utility in bioremediation of soil and water contaminated with PCP.Abbreviations DCP dichlorophenol - TCP trichlorophenol - TeCP tetrachlorophenol Contribution No. 750 from the United States Environmental Protection Agency Environmental Research Laboratory, Gulf Breeze, FL32561, USA. A preliminary report of this work has appeared in abstract form (Resnick & Chapman 1990; Abstr. Annu Meet Amer Soc Microbiol Q-70, p. 300).  相似文献   

19.
The effects of kanamycin and streptomycin added to soil on the survival of transposon Tn5 modified Pseudomonas fluorescens strain R2f were investigated. Kanamycin in high (180 g g-1 dry soil) or low (18 g g-1) concentration or streptomycin in low concentration in Ede loamy sand soil had no noticeable effect on inoculant population dynamics in soil and wheat rhizosphere, whereas streptomycin in high concentration had a consistent significant stimulatory effect, in particular in the wheat rhizosphere. Streptomycin exerted its effect by selecting P. fluorescens with Tn5 insertion whilst suppressing the unmodified sensitive parent strain, as evidenced by comparing the behaviour of these two strains in separate and mixed inoculation studies.Soil textural type influenced the effect of streptomycin on the Tn5 carrying inoculant; the effect was consistently detected in rhizosphere and rhizoplane samples of wheat grown in Ede loamy sand after 7 and 14 days incubation, whereas it was only apparent after 7 days in rhizoplane or rhizosphere (and bulk soil) samples of wheat grown in two silt loam soils. Modification of soil pH by the addition of CaCO3 or bentonite clay resulted in an enhancement of the selective effect of streptomycin by CaCO3 and its abolishment by bentonite clay.The addition to soil of malic acid or wheat root exudate, but not of glucose, enhanced the streptomycin selective effect on the Tn5-modified P. fluorescens strain. Neither the streptomycin producer Streptomyces griseus nor two non-inhibiting mutants obtained following UV irradiation affected the dynamics of P. fluorescens (chr::Tn5) in soil and wheat rhizosphere.The effect of streptomycin in soil on inoculant Tn5 carrying bacteria depends on conditions such as soil type, the presence of (wheat) root exudates and the type of available substrate.  相似文献   

20.
Partitioning of Respiration in an Intensively Managed Grassland   总被引:1,自引:0,他引:1  
Total (RTOT) and heterotrophic (RH) respiration were measured in an intensively managed perennial ryegrass (Lolium perenne L.) grassland. The overall aim of the study was to partition RTOT into RH and autotrophic respiration (RA). This was achieved as follows: (1) analyse the effect of air temperature, soil moisture content and leaf area index on RTOT and the influence of soil temperature and soil moisture content on RH; (2) combine these effects into separate empirical models for RTOT and RH and; (3) use these models to determine temporal trends in RTOT and RH and to assess the relative contribution of RH and RA to RTOT. CO2 fluxes were measured using a vented and thermostatically controlled perspex chamber in conjunction with a portable infrared gas analyser. RTOT was measured in plots with grass and RH in plots with bare soil. RTOT was related to air temperature and RH to soil temperature using exponential relationships. Both RTOT and RH were related to soil moisture content using lognormal relationships. RTOT was related to leaf area index using a linear relationship. These relationships were combined to produce statistical response functions that explained 87% and 84% of the variation in RTOT and RH, respectively. These relationships were combined with meteorological and leaf area index data to reconstruct daily and seasonal fluxes. RTOT values in wintertime were ~4 g C m−2 day−1 increasing to ~10 g C m−2 day−1 in summertime when temperatures and leaf area index were higher and soils were drier. RH has a similar seasonal trend to RTOT but was consistently lower. Wintertime values were ~2 g C m−2 day−1 and increased to ~5 g C m−2 day−1 in summertime. Before day of year 143, and after day of year 259 RH and RA represented 62% and 38% of RTOT, respectively. In the period between these days RH and RA both accounted for 50% of RTOT. In total during 2004 RTOT, RH and RA were 2.34, 1.31 and 1.03 kg C m−2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号