首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the thyroid status on the cytosolic free Ca2+ concentration ([Ca2+]i) in single cardiomyocytes were studied at rest and during contraction. The mean resting [Ca2+]i increased significantly from the hypothyroid (45 +/- 4 nM) through the euthyroid (69 +/- 12 nM) to the hyperthyroid condition (80 +/- 11 nM) at extracellular Ca2+ concentrations ([Ca2+]o) up to 2.5 mM. At [Ca2+]o above 2.5 mM the differences in [Ca2+]i between the groups became less. The amplitude of the Ca2+ transients became higher in all groups with increasing [Ca2+]o (1, 2.5 and 5 mM), and was highest at all [Ca2+]o in hyperthyroid myocytes. The beta-agonist isoprenaline elevated peak [Ca2+]i during contraction and increased the rate of the decay of the Ca2+ transients to a greater extent in hypothyroid myocytes than in hyperthyroid myocytes. Depolarization with high [K+]o induced a large but transient [Ca2+]i overshoot in hypothyroid myocytes, but not in hyperthyroid myocytes, before a new elevated steady-state [Ca2+]i was reached, which was not different between the groups. When isoprenaline was added to K+ o-depolarized myocytes after a steady state was reached, a significantly larger extra increase in [Ca2+]i was measured in the hypothyroid group (28%) compared with the hyperthyroid group (8%). It is concluded that in cardiac tissue exposed to increasing amounts of thyroid hormones (1) [Ca2+]i increases at rest and during contraction in cardiomyocytes and (2) interventions which favour Ca2+ entry into the cytosol [( Ca2+]o elevation, high [K+]o, beta-agonists) tend to have less impact on Ca2+ homoeostasis.  相似文献   

2.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

3.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

4.
The present study was designed to explore the role of the Na+/Ca2+ exchanger on spontaneous beating of cultured cardiac myocytes. Antisense oligonucleotides (AS) based on the sequence of the cardiac Na+/Ca2+ exchanger were used to decrease expression of this Ca2+ transporting protein in cardiac myocytes. An application of AS (10 microM) caused an increase in beating rate of myocytes within 6-24 h. After 24 h of exposure, AS increased the beating rate from an average rate of 77 beats/min in control and sense-treated myocytes to 103 beats/min. Moreover, myocytes treated for 24 h with 10 microM AS exhibited an increase in diastolic [Ca2+]i levels. The antisense treatment also led to a approximately 20% decrease in expression of Na+/Ca2+ exchanger proteins within 6-24 h. Changes in mRNA levels following AS treatment could not be detected within 3- to 24-h periods. The results of these studies suggest that the Na+/Ca2+ exchanger plays a potentiating role in spontaneous the beating process by regulating [Ca2+]i dynamics and that even a small reduction in the levels of the exchanger protein has marked effects on the handling of [Ca2+]i during the cardiac cycle.  相似文献   

5.
A primary determinant of vascular smooth muscle (VSM) tone and contractility is the resting membrane potential, which, in turn, is influenced heavily by K+ channel activity. Previous studies from our laboratory and others have demonstrated differences in the contractility of cerebral arteries from near-term fetal and adult animals. To test the hypothesis that these contractility differences result from maturational changes in voltage-gated K+ channel function, we compared this function in VSM myocytes from adult and fetal sheep cerebral arteries. The primary current-carrying, voltage-gated K+ channels in VSM myocytes are the large conductance Ca2+-activated K+ channels (BKCa) and voltage-activated K+ (KV) channels. We observed that at voltage-clamped membrane potentials of +60 mV in perforated whole cell studies, the normalized outward current densities in fetal myocytes were >30% higher than in those of the adult (P < 0.05) and that these were predominantly due to iberiotoxin-sensitive currents from BKCa channels. Excised, insideout membrane patches revealed nearly identical unitary conductances and Hill coefficients for BKCa channels. The plot of log intracellular [Ca2+] ([Ca2+]i) versus voltage for half-maximal activation (V(1/2)) yielded linear and parallel relationships, and the change in V(1/2) for a 10-fold change in [Ca2+] was also similar. Channel activity increased e-fold for a 19 +/- 2-mV depolarization for adult myocytes and for an 18 +/- 1-mV depolarization for fetal myocytes (P > 0.05). However, the relationship between BKCa open probability and membrane potential had a relative leftward shift for the fetal compared with adult myocytes at different [Ca2+]i. The [Ca2+] for half-maximal activation (i.e., the calcium set points) at 0 mV were 8.8 and 4.7 microM for adult and fetal myocytes, respectively. Thus the increased BKCa current density in fetal myocytes appears to result from a lower calcium set point.  相似文献   

6.
Glucose depolarizes the pancreatic beta-cell and induces membrane potential oscillations, but the nature of the underlying oscillatory conductance remains unknown. We have now investigated the effects of the Ca2+ ionophore ionomycin and high external Ca2+ concentration ([Ca2+]o) on glucose-induced electrical activity and whole islet intracellular free Ca2+ concentration ([Ca2+]i), under conditions where the K(ATP) channel was blocked (100 microM tolbutamide or 4 microM glibenclamide). Raising [Ca2+]o to 10.2 or 12.8 mM, but not to 5.1 or 7.7 mM, turned continuous electrical activity into bursting activity. High [Ca2+]o (12.8 mM) regenerated a pattern of fast [Ca2+]i oscillations overshooting the levels recorded in tolbutamide. Ionomycin (10 microM) raised the [Ca2+]i and synergized with 5.1 mM Ca2+ to hyperpolarize the beta-cell membrane. The data indicate that a [Ca2+]i-sensitive and sulphonylurea-insensitive oscillatory conductance underlies the beta-cell bursting activity.  相似文献   

7.
The effects of glucose, tolbutamide and K+ on cytosolic free Ca2+ ([Ca2+]i) in single rat pancreatic B cells were examined using Fura-2 and dual wavelength microfluorimetry. At basal glucose concentration (2.8 mM), about half of the cells were found to display spontaneous Ca2+ oscillations. Glucose (greater than or equal to 11.1 mM), tolbutamide (greater than or equal to 50 microM) and K+ (50 mM) induced rises in [Ca2+]i that could be inhibited by the Ca2+ channel blocker D600. The pattern of response and the sensitivity to the secretagogues were characterized by a marked heterogeneity. The majority of the cells responded to glucose and tolbutamide by a progressive increase in [Ca2+]i onto which sinusoidal oscillations were superimposed. The periodicity of these oscillations was about 2.5/min. Occasionally, some cells displayed slow and major waves in Ca2+ levels (about 0.2/min). None of the cells responded to glucose by displaying an initial decrease in [Ca2+]i. Likewise, the sugar failed to decrease [Ca2+]i in the absence of extracellular Ca2+. The present study shows that, despite a large heterogeneity of the response, the majority of the pancreatic B cells respond to different secretagogues by displaying fast [Ca2+]i oscillations that are reminiscent of the bursts of electrical activity recorded in B cells.  相似文献   

8.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

9.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

10.
Apparent free cytoplasmic concentrations of Mg2+ ([Mg2+]i) and Na+ ([Na+]i) were estimated in rat ventricular myocytes using fluorescent indicators, furaptra (mag-fura-2) for Mg2+ and sodium-binding benzofuran isophthalate for Na+, at 25 degrees C in Ca2+-free conditions. Analysis included corrections for the influence of Na+ on furaptra fluorescence found in vitro and in vivo. The myocytes were loaded with Mg2+ in a solution containing 24 mM Mg2+ either in the presence of 106 mM Na+ plus 1 mM ouabain (Na+ loading) or in the presence of only 1.6 mM Na+ to deplete the cells of Na+ (Na+ depletion). The initial rate of decrease in [Mg2+]i from the Mg2+-loaded cells was estimated in the presence of 140 mM Na+ and 1 mM Mg2+ as an index of the rate of extracellular Na+-dependent Mg2+ efflux. Average [Na+]i, when estimated from sodium-binding benzofuran isophthalate fluorescence in separate experiments, increased from 12 to 31 mM and 47 mM after Na+ loading for 1 and 3 h, respectively, and decreased to approximately 0 mM after 3 h of Na+ depletion. The intracellular Na+ loading significantly reduced the initial rate of decrease in [Mg2+]i, on average, by 40% at 1 h and by 64% at 3 h, suggesting that the Mg2+ efflux was inhibited by intracellular Na+ with 50% inhibition at approximately 40 mM. A reduction of the rate of Mg2+ efflux was also observed when Na+ was introduced into the cells through the amphotericin B-perforated cell membrane (perforated patch-clamp technique) via a patch pipette that contained 130 mM Na+. When the cells were heavily loaded with Na+ with ouabain in combination with intracellular perfusion from the patch pipette containing 130 mM Na+, removal of extracellular Na+ caused an increase in [Mg2+]i, albeit at a very limited rate, which could be interpreted as reversal of the Mg2+ transport, i.e., Mg2+ influx driven by reversed Na+ gradient. Extracellular Na+ dependence of the rate of Mg2+ efflux revealed that the Mg2+ efflux was activated by extracellular Na+ with half-maximal activation at 55 mM. These results contribute to a quantitative characterization of the Na+-Mg2+ exchange in cardiac myocytes.  相似文献   

11.
The Ca2+ sensitivity of large conductance Ca2+- and voltage-activated K+ channels (BKV,Ca) has been determined in situ in freshly isolated myocytes from the guinea pig urinary bladder. In this study, in situ denotes that BKV,Ca channel activity was recorded without removing the channels from the cell. By combining patch clamp recording in the cell-attached configuration and microfluorometry of fura-2, we were able to correlate BKV,Ca channel activity with changes in cytoplasmic intracellular [Ca2+] ([Ca2+]i). The latter were induced by ionomycin, an electroneutral Ca2+ ionophore. At 0 mV, the Hill coefficient (nH) and the [Ca2+]i to attain half of the maximal BKV,Ca channel activity (Ca50) were 8 and 1 microM, respectively. The data suggest that this large Hill number was not a consequence of the difference between the near-membrane [Ca2+] ([Ca2+]s) and the bulk [Ca2+]i, indicated by fura-2. High Hill numbers in the activation by Ca2+ of BKV,Ca channels have been seen by different groups (e.g., filled squares in Fig. 4 of Silberberg, S. D., A. Lagrutta, J. P. Adelman, and K. L. Magleby. 1996. Biophys. J. 70:2640-2651). However, such high nH has always been considered a peculiarity rather than the rule. This work shows that a high Ca2+ cooperativity is the normal situation for BKV,Ca channels in myocytes from guinea pig urinary bladder. Furthermore, the Ca50 did not display any significant variation among different channels or cells. It was also evident that BKV,Ca channel activity could decrease in elevated [Ca2+]i, either partially or completely. This work implies that the complete activation of BKV,Ca channels occurs with a smaller increment in [Ca2+]s than previously expected from in vitro characterization of the Ca2+ sensitivity of these channels. Additionally, it appears that the activity of BKV,Ca channels in situ does not strictly follow changes in near-membrane [Ca2+].  相似文献   

12.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

13.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

14.
The effects of cyanide on Ca2+ exchange in isolated ventricular myocytes and on the intracellular concentrations of Ca2+, Na+ and H+ have been investigated to assess the contribution that mitochondria might play in cellular Ca2+ metabolism. Ionic levels were measured with ion-selective electrodes. KCN (2.5 mM) inhibited a component of Ca2+ exchange in myocytes that could be attributed to mitochondrial exchange, but was without effect on non-mitochondrial Ca2+ exchange. NaCN (2.5 mM) caused a transient reduction of [H+]i, [Na+]i and [Ca2+]i when applied to the superfusate bathing ventricular trabeculae or papillary muscles. The transient changes of [Na+]i were accentuated when the preparation was exposed to a solution which would be expected to increase the cellular calcium content. The reduction of [Na+]i which accompanies a reduction of the extracellular sodium concentration, [Na]o, was attenuated in the presence of NaCN, but the intracellular acidosis resulting from a reduction of [Na]o was unaffected by NaCN. A small, but significant, rise of [Ca2+]i accompanied a reduction of [Na]o but only when NaCN was present in the superfusate. It is concluded that cyanide ions have a reasonably specific action on cardiac cellular ionic metabolism. Its primary action is to prevent mitochondrial Ca2+ sequestration. It is postulated that a Na+/H+ exchange, possibly at the sarcolemma, could account for some of the changes to sarcoplasmic ionic levels observed. In a solution of low [Na]o, it is concluded that mitochondria could sequester at least 30% of the calcium accumulated by the cell even though the sarcoplasmic [Ca2+] does not exceed 0.3 microM.  相似文献   

15.
Incubation of bovine adrenal chromaffin cells in high K+ (38 mM) during 24-48 h enhanced 2.5 to five times the expression of SNAP-25 protein and mRNA, respectively. This increase was reduced 86% by furnidipine (an L-type Ca2+ channel blocker) but was unaffected by either omega-conotoxin GVIA (an N-type Ca2+ channel blocker) or -agatoxin IVA (a P/Q-type Ca2+ channel blocker). Combined blockade of N and P/Q channels with omega-conotoxin MVIIC did, however, block by 76% the protein expression. The inhibitory effects of fumidipine were partially reversed when the external Ca2+ concentration was raised from 1.6 to 5 mM. These findings, together with the fact that nicotinic receptor activation or Ca2+ release from internal stores also enhanced SNAP-25 protein expression, suggest that an increment of cytosolic Ca2+ concentration ([Ca2+]), rather than its source or Ca2+ entry pathway, is the critical signal to induce the protein expression. The greater coupling between L-type Ca2+ channels and protein expression might be due to two facts: (a) L channels contributed 50% to the global [Ca2+]i rise induced by 38 mM K+ in indo-1-loaded chromaffin cells and (b) L channels undergo less inactivation than N or P/Q channels on sustained stimulation of these cells.  相似文献   

16.
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons.  相似文献   

17.
18.
We investigated a possible role of nifedipine-insensitive high voltage-activated (NI-HVA) Ca2+ channels in arterial diameter regulation in the semi-terminal branches of rabbit mesenteric artery (RMA). From these branches, NI-HVA Ca2+ currents showing almost identical properties to those previously identified in a similar region of guinea-pig [Circulation Research 1999;85:596-605] were recorded with whole-cell patch clamp recording. With video-microscopic measurement, the diameter of RMA segments perfused intraluminally at a constant rate (2-6 mL/h; 269 +/- 9 micro m, n = 27) decreased by 50-60% by raising the external K+ concentration ([K+]o) to 75 mM, a substantial part of which remained after addition of 1-10 micro M nifedipine (44 +/- 5% of initial diameter, n = 27). This nifedipine-insensitive diameter decrease (NI-DD) appeared to consist of initial transient and subsequent tonic phases (this separation was, however, not always clear), was resistant to tetrodotoxin, and was completely abolished in Ca2+-free or 100 micro M Cd2+-containing bath solutions. The magnitude of NI-DD increased depending on [K+]o with a threshold concentration of 20-40 mM. Raising the external Ca2+ concentration dose-dependently increased the magnitude of NI-DD, the extent being more prominent in the late tonic phase. Combined application of caffeine (10 mM) with ryanodine (3 micro M) produced a large transient NI-DD, which strongly attenuated the NI-DD evoked by a subsequent elevation in [K+]o. Using the fura-2 spectrofluorimetric Ca2+ imaging technique, a nifedipine-insensitive [Ca2+]i increase showing similar [K+]o-dependence and Cd2+ sensitivity to NI-DD was observed. These properties of NI-DD accord with those of NI-HVA Ca2+ channels, thus suggesting their contribution to small arterial diameter regulation in RMA.  相似文献   

19.
The effects of the thyroid state on the cytosolic free Ca2+ concentration, [Ca2+]i, of resting and K+-depolarized cardiomyocytes were studied using the fluorescent Ca2+ indicator fura2. The mean resting [Ca2+]i in euthyroid myocytes (89 +/- 8 nM) was not significantly different from that in hyperthyroid myocytes (100 +/- 14 nM). The resting O2-consumption rate was identical for both groups when expressed per mg protein, but a 35% higher value was observed in the hyperthyroid group when expressed per cell on account of the cellular hypertrophy induced by thyroid hormone. Potassium induced depolarization (50 mM [K+]0) raised the level of [Ca2+]i by 50% in both groups. When ATP-coupled respiration was blocked with oligomycin, the 50 mM K+-induced rise in [Ca2+]i was accompanied in both groups by a 40% rise in glycolytic activity as inferred from measurement of lactate production. Ca2+-fluorescence transients were recorded from electrically stimulated myocytes of euthyroid, hyperthyroid and hypothyroid rats. The time taken to reach peak fluorescence (TPL) and that to 50% decay of peak fluorescence (RL0.5) decreased in the direction hypothyroid----hyperthyroid, indicating an increase in Ca2+ fluxes in the same direction. Isoproterenol (1 microM) enhanced the peak Ca2+ fluorescence in electrically stimulated hypothyroid and euthyroid myocytes but not in hyperthyroid myocytes. Both the TPL and RL0.5 were decreased by isoproterenol in euthyroid, but more so in hypothyroid myocytes. None of these parameters were influenced by isoproterenol in the hyperthyroid group. We conclude that (1) thyroid hormone increases neither the O2-consumption rate nor the level of [Ca2+]i of resting cardiomyocytes and (2) the effects of the beta-receptor-agonist isoproterenol on Ca2+ transients of electrically stimulated myocytes, are inversely related to the documented changes in beta-receptor density in heart tissue occurring with alterations in the thyroid state.  相似文献   

20.
The significance of altered Ca2+ influx and efflux pathways on contractile abnormalities of myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) was investigated by varying extracellular Ca2+ concentration ([Ca2+]o, 0.6-5.0 mM) and pacing frequency (0.1-5.0 Hz). Myocytes isolated from 3-wk MI hearts were significantly longer than those from sham-treated (Sham) hearts (125 +/- 1 vs. 114 +/- 1 micrometer, P < 0.0001). At high [Ca2+]o and low pacing frequency, conditions that preferentially favored Ca2+ influx over efflux, Sham myocytes shortened to a greater extent than 3-wk MI myocytes. Conversely, under conditions that favored Ca2+ efflux (low [Ca2+]o and high pacing frequency), MI myocytes shortened more than Sham myocytes. At intermediate [Ca2+]o and pacing frequencies, differences in steady-state contraction amplitudes between Sham and MI myocytes were no longer significant. Collectively, the interpretation of these data was that Ca2+ influx and efflux pathways were subnormal in MI myocytes and that they contributed to abnormal cellular contractile behavior. Because Na+/Ca2+ exchange activity, but not whole cell Ca2+ current, was depressed in 3-wk MI rat myocytes, our results on steady-state contraction are consistent with, but not proof of, the hypothesis that depressed Na+/Ca2+ exchange accounted for abnormal contractility in MI myocytes. The effects of depressed Na+/Ca2+ exchange on MI myocyte mechanical activity were further evaluated in relaxation from caffeine-induced contractures. Because Ca2+ uptake by sarcoplasmic reticulum was inhibited by caffeine and with the assumption that intracellular Na+ and membrane potential were similar between Sham and MI myocytes, myocyte relaxation from caffeine-induced contracture can be taken as an estimate of Ca2+ extrusion by Na+/Ca2+ exchange. In MI myocytes, in which Na+/Ca2+ exchange activity was depressed, the half time of relaxation (1.54 +/- 0.14 s) was significantly (P < 0.02) prolonged compared with that measured in Sham myocytes (1.10 +/- 0.10 s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号