首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant epidermal cells dedicate more than half of their lipid metabolism to the synthesis of cuticular lipids, which seal and protect the plant shoot. The cuticle is made up of a cutin polymer and waxes, diverse hydrophobic compounds including very-long-chain fatty acids and their derivatives. How such hydrophobic compounds are exported to the cuticle, especially through the hydrophilic plant cell wall, is not known. By performing a reverse genetic screen, we have identified LTPG, a glycosylphosphatidylinositol-anchored lipid transfer protein that is highly expressed in the epidermis during cuticle biosynthesis in Arabidopsis thaliana inflorescence stems. Mutant plant lines with decreased LTPG expression had reduced wax load on the stem surface, showing that LTPG is involved either directly or indirectly in cuticular lipid deposition. In vitro 2-p-toluidinonaphthalene-6-sulfonate assays showed that recombinant LTPG has the capacity to bind to this lipid probe. LTPG was primarily localized to the plasma membrane on all faces of stem epidermal cells in the growing regions of inflorescence stems where wax is actively secreted. These data suggest that LTPG may function as a component of the cuticular lipid export machinery.  相似文献   

2.
3.
The aerial organs of plants are covered with a cuticle, a continuous layer overlaying the outermost cell walls of the epidermis. The cuticle is composed of two major classes of the lipid biopolymers: cutin and waxes, collectively termed cuticular lipids. Biosynthesis and transport of cuticular lipids occur predominantly in the epidermis cells. In the transport pathway, cuticular lipids are exported from their site of biosynthesis in the ER/plastid to the extracellular space through the plasma membrane and cell wall. Growing evidence suggests that ATP-binding cassette (ABC) transporters are implicated in transport of cuticular lipids across the plasma membrane of epidermal cells. The Arabidopsis ABC-type transporter protein CER5 (WBC12) was reported to act as a wax monomers transporter. In recent works, our group and others showed that a CER5-related protein, DESPERADO (DSO/WBC11), is required for cutin and wax monomers transport through the plasma membrane of Arabidopsis epidermis cells. Unlike the cer5 mutant, DSO loss-of-function had a profound effect on plant growth and development, particularly dwarfism, postgenital organ fusions, and altered epidermal cell differentiation. The partially overlapping function of CER5 and DSO and the fact that these proteins are half-size ABC transporters suggest that they might form a hetero-dimeric complex while transporting wax components. An intriguing observation was the polar localization of DSO in the distal part of epidermis cells. This polar expression might be explained by DSO localization within lipid rafts, specific plasma membrane microdomains which are associated with polar protein expression. In this review we suggest possible mechanisms for cuticular lipids transport and a link between DSO function and polar expression. Furthermore, we also discuss the subsequent transport of cuticular constituents through the hydrophobic cell wall and the possible involvement of lipid transfer proteins in this process.Key words: ABC transporter, cuticular lipids, polar expression, plasma membrane, epidermis  相似文献   

4.
5.
Y Xia  B J Nikolau    P S Schnable 《The Plant cell》1996,8(8):1291-1304
Cuticular waxes are complex mixtures of very long chain fatty acids and their derivatives that cover plant surfaces. Mutants of the ECERIFERUM2 (cer2) gene of Arabidopsis condition bright green stems and siliques, indicative of the relatively low abundance of the cuticular wax crystals that comprise the wax bloom on wild-type plants. We cloned the CER2 gene via chromosome walking. Three lines of evidence establish that the cloned sequence represents the CER2 gene: (1) this sequence is capable of complementing the cer2 mutant phenotype in transgenic plants; (2) the corresponding DNA sequence isolated from plants homozygous for the cer2-2 mutant allele contains a sequence polymorphism that generates a premature stop codon; and (3) the deduced CER2 protein sequence exhibits sequence similarity to that of a maize gene (glossy2) that also is involved in cuticular wax accumulation. The CER2 gene encodes a novel protein with a predicted mass of 47 kD. We studied the expression pattern of the CER2 gene by in situ hybridization and analysis of transgenic Arabidopsis plants carrying a CER2-beta-glucuronidase gene fusion that includes 1.0 kb immediately upstream of CER2 and 0.2 kb of CER2 coding sequences. These studies demonstrate that the CER2 gene is expressed in an organ- and tissue-specific manner; CER2 is expressed at high levels only in the epidermis of young siliques and stems. This finding is consistent with the visible phenotype associated with mutants of the CER2 gene. Hence, the 1.2-kb fragment of the CER2 gene used to construct the CER2-beta-glucuronidase gene fusion includes all of the genetic information required for the epidermis-specific accumulation of CER2 mRNA.  相似文献   

6.
Greer S  Wen M  Bird D  Wu X  Samuels L  Kunst L  Jetter R 《Plant physiology》2007,145(3):653-667
Most aerial surfaces of plants are covered by cuticular wax that is synthesized in epidermal cells. The wax mixture on the inflorescence stems of Arabidopsis (Arabidopsis thaliana) is dominated by alkanes, secondary alcohols, and ketones, all thought to be formed sequentially in the decarbonylation pathway of wax biosynthesis. Here, we used a reverse-genetic approach to identify a cytochrome P450 enzyme (CYP96A15) involved in wax biosynthesis and characterized it as a midchain alkane hydroxylase (MAH1). Stem wax of T-DNA insertional mutant alleles was found to be devoid of secondary alcohols and ketones (mah1-1) or to contain much lower levels of these components (mah1-2 and mah1-3) than wild type. All mutant lines also had increased alkane amounts, partially or fully compensating for the loss of other compound classes. In spite of the chemical variation between mutant and wild-type waxes, there were no discernible differences in the epicuticular wax crystals on the stem surfaces. Mutant stem wax phenotypes could be partially rescued by expression of wild-type MAH1 under the control of the native promoter as well as the cauliflower mosaic virus 35S promoter. Cauliflower mosaic virus 35S-driven overexpression of MAH1 led to ectopic accumulation of secondary alcohols and ketones in Arabidopsis leaf wax, where only traces of these compounds are found in the wild type. The newly formed leaf alcohols and ketones had midchain functional groups on or next to the central carbon, thus matching those compounds in wild-type stem wax. Taken together, mutant analyses and ectopic expression of MAH1 in leaves suggest that this enzyme can catalyze the hydroxylation reaction leading from alkanes to secondary alcohols and possibly also a second hydroxylation leading to the corresponding ketones. MAH1 expression was largely restricted to the expanding regions of the inflorescence stems, specifically to the epidermal pavement cells, but not in trichomes and guard cells. MAH1-green fluorescent protein fusion proteins localized to the endoplasmic reticulum, providing evidence that both intermediate and final products of the decarbonylation pathway are generated in this subcellular compartment and must subsequently be delivered to the plasma membrane for export toward the cuticle.  相似文献   

7.
ABCG11/WBC11, an ATP binding cassette (ABC) transporter from Arabidopsis thaliana, is a key component of the export pathway for cuticular lipids. Arabidopsis wbc11 T-DNA insertional knock-out mutants exhibited lipidic inclusions inside epidermal cells similar to the previously characterized wax transporter mutant cer5, with a similar strong reduction in the alkanes of surface waxes. Moreover, the wbc11 knock-out mutants also showed defects not present in cer5, including post-genital organ fusions, stunted growth and a reduction in cutin load on the plant surface. A mutant line previously isolated in a forward genetics screen, called permeable leaves 1 (pel1), was identified as an allele of ABCG11/WBC11. The double knock-out wbc11 cer5 exhibited the same morphological and biochemical phenotypes as the wbc11 knock-out. A YFP-WBC11 fusion protein rescued a T-DNA knock-out mutant and was localized to the plasma membrane. These results show that WBC11 functions in secretion of surface waxes, possibly by interacting with CER5. However, unlike ABCG12/CER5, ABCG11/WBC11 is important to the normal process of cutin formation.  相似文献   

8.
9.
10.
The reaction of plants to environmental factors often varies with developmental stage. It was hypothesized, that also the cuticle, the outer surface layer of plants is modified during ontogenesis. Apple plantlets, cv. Golden Delicious, were grown under controlled conditions avoiding biotic and abiotic stress factors. The cuticular wax surface of adaxial apple leaves was analyzed for its chemical composition as well as for its micromorphology and hydrophobicity just after unfolding of leaves ending in the seventh leaf insertion. The outer surface of apple leaves was formed by a thin amorphous layer of epicuticular waxes. Epidermal cells of young leaves exhibited a distinctive curvature of the periclinal cell walls resulting in an undulated surface of the cuticle including pronounced lamellae, with the highest density at the centre of cells. As epidermal cells expanded during ontogenesis, the upper surface showed only minor surface sculpturing and a decrease in lamellae. With increasing leaf age the hydrophobicity of adaxial leaf side decreased significantly indicated by a decrease in contact angle. Extracted from plants, the amount of apolar cuticular wax per area unit ranged from only 0.9 microgcm(-2) for the oldest studied leaf to 1.5 microgcm(-2) for the youngest studied leaf. Differences in the total amount of cuticular waxes per leaf were not significant for older leaves. For young leaves, triterpenes (ursolic acid and oleanolic acid), esters and alcohols were the main wax components. During ontogenesis, the proportion of triterpenes in total mass of apolar waxes decreased from 32% (leaf 1) to 13% (leaf 7); absolute amounts decreased by more than 50%. The proportion of wax alcohols and esters, and alkanes to a lesser degree, increased with leaf age, whereas the proportion of acids decreased. The epicuticular wax layer also contained alpha-tocopherol described for the first time to be present also in the epicuticular wax. The modifications in the chemical composition of cuticular waxes are discussed in relation to the varying physical characteristics of the cuticle during ontogenesis of apple leaves.  相似文献   

11.
Chen X  Goodwin SM  Boroff VL  Liu X  Jenks MA 《The Plant cell》2003,15(5):1170-1185
Insertional mutagenesis of Arabidopsis ecotype C24 was used to identify a novel mutant, designated wax2, that had alterations in both cuticle membrane and cuticular waxes. Arabidopsis mutants with altered cuticle membrane have not been reported previously. Compared with the wild type, the cuticle membrane of wax2 stems weighed 20.2% less, and when viewed using electron microscopy, it was 36.4% thicker, less opaque, and structurally disorganized. The total wax amount on wax2 leaves and stems was reduced by >78% and showed proportional deficiencies in the aldehydes, alkanes, secondary alcohols, and ketones, with increased acids, primary alcohols, and esters. Besides altered cuticle membranes, wax2 displayed postgenital fusion between aerial organs (especially in flower buds), reduced fertility under low humidity, increased epidermal permeability, and a reduction in stomatal index on adaxial and abaxial leaf surfaces. Thus, wax2 reveals a potential role for the cuticle as a suppressor of postgenital fusion and epidermal diffusion and as a mediator of both fertility and the development of epidermal architecture (via effects on stomatal index). The cloned WAX2 gene (verified by three independent allelic insertion mutants with identical phenotypes) codes for a predicted 632-amino acid integral membrane protein with a molecular mass of 72.3 kD and a theoretical pI of 8.78. WAX2 has six transmembrane domains, a His-rich diiron binding region at the N-terminal region, and a large soluble C-terminal domain. The N-terminal portion of WAX2 is homologous with members of the sterol desaturase family, whereas the C terminus of WAX2 is most similar to members of the short-chain dehydrogenase/reductase family. WAX2 has 32% identity to CER1, a protein required for wax production but not for cuticle membrane production. Based on these analyses, we predict that WAX2 has a metabolic function associated with both cuticle membrane and wax synthesis. These studies provide new insight into the genetics and biochemistry of plant cuticle production and elucidate new associations between the cuticle and diverse aspects of plant development.  相似文献   

12.
David A. Bird   《Plant science》2008,174(6):563-569
The aerial surfaces of plants are enveloped by a waxy cuticle, which among other functions serves as a barrier to limit non-stomatal water loss and defend against pathogens. The cuticle is a complex three-dimensional structure composed of cutin (a lipid polyester matrix) and waxes (very long chain fatty acid derivatives), which are embedded within and layered on top of the cutin matrix. Biosynthesis of cuticular lipids is believed to take place solely within aerial epidermal cells. Once synthesized, both the waxes and the cutin precursors must leave the cytoplasm, pass through the hydrophilic apoplastic space, and finally assemble to form the cuticle. These processes of secretion and assembly are essentially unknown. Initial steps toward our understanding of these processes were the characterization of CER5/ABCG12/WBC12 and more recently ABCG11/WBC11, a pair of ABC transporters required for cuticular lipid secretion. ABCG12 is involved in wax secretion, as mutations in this gene result in a lower surface-load of wax and a concomitant accumulation of lipidic inclusions within the epidermal cell cytoplasm. Mutations in ABCG11 result in a similar wax phenotype as cer5 and similar cytoplasmic inclusions. In contrast to cer5, however, abcg11 mutants also show significantly reduced cutin, post-genital organ fusions, and reduced growth and fertility. Thus, for the first time, a transporter is implicated in cutin accumulation. This review will discuss the secretion of cuticular lipids, focusing on ABCG12, ABCG11 and the potential involvement of other ABC transporters in the ABCG subfamily.  相似文献   

13.
Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.  相似文献   

14.
The leaf surface properties of 11 cuticular wax mutants of maize were characterized, and this information was used to identify the quantitative relations among distinct leaf surface traits. Compared with the wild‐type maize, these mutants were reduced 3–24% in their leaf surface hydrophobicity, 20–88% in the mass of cuticular waxes on their leaves, and 52–94% in the percentage of planar leaf surface area covered with epicuticular crystalline waxes. They also differed in the presence and abundance of the epicuticular crystalline waxes in each of seven structural classes. With the exception of one mutant, the mass of cuticular waxes produced by these mutants was positively correlated with the number of epicuticular crystalline waxes per unit area on their leaves. Furthermore, an increase of 0·4 mg of cuticular wax per gram of leaf (dry weight) was associated with a 1% increase in leaf surface area covered by epicuticular crystalline waxes, and this 1% increase was associated with a 2° increase in the contact angle of a water droplet on the leaf surface. Linear differences in the leaf surface hydrophobicity were associated with exponential differences in the mass of the cuticular waxes produced. Quantitative knowledge of these leaf surface properties is highly relevant to the interactions of leaves with environmental factors such as microbes, insects, agricultural chemicals, and pollutants.  相似文献   

15.
16.
Long-chain acyl-CoA synthetase (LACS) activities are encoded by a family of at least nine genes in Arabidopsis (Arabidopsis thaliana). These enzymes have roles in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. Here, we show that the LACS2 gene (At1g49430) is expressed in young, rapidly expanding tissues, and in leaves expression is limited to cells of the adaxial and abaxial epidermal layers, suggesting that the LACS2 enzyme may act in the synthesis of cutin or cuticular waxes. A lacs2 null mutant was isolated by reverse genetics. Leaves of mutant plants supported pollen germination and released chlorophyll faster than wild-type leaves when immersed in 80% ethanol, indicating a defect in the cuticular barrier. The composition of surface waxes extracted from lacs2 leaves was similar to the wild type, and the total wax load was higher than the wild type (111.4 microg/dm(2) versus 76.4 microg/dm(2), respectively). However, the thickness of the cutin layer on the abaxial surface of lacs2 leaves was only 22.3 +/- 1.7 nm compared with 33.0 +/- 2.0 nm for the wild type. In vitro assays showed that 16-hydroxypalmitate was an excellent substrate for recombinant LACS2 enzyme. We conclude that the LACS2 isozyme catalyzes the synthesis of omega-hydroxy fatty acyl-CoA intermediates in the pathway to cutin synthesis. The lacs2 phenotype, like the phenotypes of some other cutin mutants, is very pleiotropic, causing reduced leaf size and plant growth, reduced seed production, and lower rates of seedling germination and establishment. The LACS2 gene and the corresponding lacs2 mutant will help in future studies of the cutin synthesis pathway and in understanding the consequences of reduced cutin production on many aspects of plant biology.  相似文献   

17.
18.
Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across primary plant surfaces. The astomatous tomato fruit is an ideal model system that permits the functional characterization of intact cuticular membranes and therefore allows direct correlation of their permeance for water with their qualitative and quantitative composition. The recessive positional sterile (ps) mutation, which occurred spontaneously in tomato (Solanum lycopersicum L.), is characterized by floral organ fusion and positional sterility. Because of a striking phenotypical similarity with the lecer6 wax mutant of tomato, which is defective in very-long-chain fatty acid elongation, ps mutant fruits were analyzed for their cuticular wax and cutin composition. We also examined their cuticular permeance for water following the developmental course of fruit ripening. Wild type and ps mutant fruits showed considerable differences in their cuticular permeance for water, while exhibiting similar quantitative wax accumulation. The ps mutant fruits showed a five- to eightfold increase in water loss per unit time and surface area when compared to the corresponding wild type fruits. The cuticular waxes of ps mutant fruits were characterized by an almost complete absence of n-alkanes and aldehydes, with a concomitant increase in triterpenoids and sterol derivatives. We also noted the occurrence of alkyl esters not present in the wild type. Quantitative and qualitative cutin monomer composition remained largely unaffected. The significant differences in the cuticular wax composition of ps mutant fruits induced a distinct increase of cuticular water permeance. The fruit wax compositional phenotype indicates the ps mutation is responsible for effectively blocking the decarbonylation pathway of wax biosynthesis in epidermal cells of tomato fruits.  相似文献   

19.
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号