首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed to simultaneously determine the concentrations of angiotensin (Ang) II, Ang 1-7, Ang III, and Ang IV in biological samples. The samples were extracted with C18 solid-phase extraction cartridges and separated by a reverse-phase C18 column using acetonitrile in water with 0.1% formic acid as a mobile phase. Ang peptides were ionized by electrospray and detected by triple quadrupole MS in the positive ion mode. (M+3H)(3+) and (M+2H)(2+) ions were chosen as the detected ions in the single ion recording (SIR) mode for LC-MS. The limits of detection (signal/noise [S/N]=3) using SIR are 1 pg for Ang IV and 5 pg for Ang 1-7, Ang III, and Ang II. Multiple reaction monitoring (MRM) mode was used for LC-MS/MS. The limits of detection (S/N =3) using MRM are 20 pg for Ang IV and 25 pg for Ang 1-7, Ang III, and Ang II. These methods were applied to analyze Ang peptides in bovine adrenal microvascular endothelial cells. The results show that Ang II is metabolized by endothelial cells to Ang 1-7, Ang III, and Ang IV, with Ang 1-7 being the major metabolite.  相似文献   

2.
Lu CY  Wu CY  Lin CH 《Analytical biochemistry》2007,368(2):123-129
In typical mass spectrometry-based protein identification using peptide fragmentation fingerprinting, front-end separation plays a critical role in successful peptide sequencing. This separation step demands a great deal of time and usually is the rate-limiting step for the whole process. Here we provide an alternative separation method, based on a simple nanoflow delivery system, that is able to shorten the separation time considerably. This system consists of a 25-mul syringe connected to a manually packed reversed-phase mini-capillary column that can be directly coupled to an electrospray ionization tandem mass spectrometer. A syringe pump is then used to deliver the peptide mixtures at a nanoscale flow rate. We examined the efficiency and efficacy of this method by analyzing the tryptic peptides of bovine serum albumin and of 10 Escherichia coli proteins separated by two-dimensional gel electrophoresis (2DE). The results showed that identification of each protein could be achieved successfully within 25 min by using the disposable mini-capillary column. Moreover, all 2DE-separated E. coli proteins were identified at high confidence levels. Together, our data suggest that this method is a suitable option for mass spectrometry-based protein identification.  相似文献   

3.
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘‐OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC‐MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics‐based studies. Limitations and requirements are discussed as well as extensions to the LC‐MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC‐MS, CE‐MS or NMR.  相似文献   

4.
Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S-proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP-1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven-transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis-specific kinases all of which may have some potential in the future regulation of male fertility.  相似文献   

5.
STb, a 48-amino acid thermostable enterotoxin is produced by enterotoxigenic Escherichia coli strains and is responsible for diarrheal diseases in many animals, including man. Our laboratory recently identified a family of molecules, from a lipid extract of porcine intestinal epithelial cells, that could bind to STb. These molecules were identified as sulfatides as they reacted with a monoclonal antibody raised against this family of molecules. However, as the epitope recognized by this monoclonal antibody was the galactose 3-sulfate, a doubt could remain as to the exact nature of the identified receptors. The goal of this study was thus to confirm the chemical nature of the STb-binding molecule as sulfatides or as distinctive molecules comprising a sulfated galactosyl residue. Using a thin-layer chromatography-overlay method we confirmed using antibodies to STb that STb recognizes the commercial sulfatides and a band migrating at the same level from the intestinal tissue lipid extract obtained from an 8-week-old piglet. The compounds recovered from the silica gel plates were analyzed by mass spectrometry in electrospray negative-ionization mode. The most abundant ions observed had m/z values of 779, 795, 879 and 907. For commercial bovine brain sulfatides the ions 795, 879 and 907 have been attributed to hydroxylated sulfatides with a saturated fatty acid chain containing 16, 22 and 24 carbons, while the 779 ion contained a saturated fatty acid chain of 16 carbons. The general profile of the ions observed was similar to the already described commercial bovine brain sulfatides.  相似文献   

6.
Xin Chen  Ying Ge 《Proteomics》2013,13(17):2563-2566
Top‐down MS‐based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top‐down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size‐based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high‐resolution separation of intact proteins for top‐down proteomics. Fast separation of intact proteins (6–669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP‐SEC provides high‐resolution separation of intact proteins using a MS‐friendly volatile solvent system, allowing the direct top‐down MS analysis of SEC‐eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP‐SEC is an attractive LC strategy for the size separation of proteins with great potential for top‐down proteomics.  相似文献   

7.
Comparative LC-MS is a powerful method for detailed quantitative comparison of complex protein mixtures. Dedicated software is required for detection, matching, and alignment of peaks in multiple LC-MS datasets. However, retention time shifts, saturation effects, limitations of experimental accuracy, and possible occurrence of split peaks make it difficult for software to perfectly match all chromatograms. We describe a procedure to assess the above problems and show that dataset quality can be enhanced with the aid of cluster analysis.  相似文献   

8.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore β-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.  相似文献   

9.
A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80–114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs.  相似文献   

10.

Introduction

Rabies is a fatal acute viral disease of the central nervous system, which is a serious public health problem in Asian and African countries. Based on the clinical presentation, rabies can be classified into encephalitic (furious) or paralytic (numb) rabies. Early diagnosis of this disease is particularly important as rabies is invariably fatal if adequate post exposure prophylaxis is not administered immediately following the bite.

Methods

In this study, we carried out a quantitative proteomic analysis of the human brain tissue from cases of encephalitic and paralytic rabies along with normal human brain tissues using an 8-plex isobaric tags for relative and absolute quantification (iTRAQ) strategy.

Results and conclusion

We identified 402 proteins, of which a number of proteins were differentially expressed between encephalitic and paralytic rabies, including several novel proteins. The differentially expressed molecules included karyopherin alpha 4 (KPNA4), which was overexpressed only in paralytic rabies, calcium calmodulin dependent kinase 2 alpha (CAMK2A), which was upregulated in paralytic rabies group and glutamate ammonia ligase (GLUL), which was overexpressed in paralytic as well as encephalitic rabies. We validated two of the upregulated molecules, GLUL and CAMK2A, by dot blot assays and further validated CAMK2A by immunohistochemistry. These molecules need to be further investigated in body fluids such as cerebrospinal fluid in a larger cohort of rabies cases to determine their potential use as antemortem diagnostic biomarkers in rabies. This is the first study to systematically profile clinical subtypes of human rabies using an iTRAQ quantitative proteomics approach.  相似文献   

11.
Liquid chromatography-mass spectrometry (LC-MS) with a dual spray electrospray ionization source has been used to measure the molecular weights of pertussis toxin (PT) subunits. Measurement accuracy better than 0.4 Da was achieved for all PT subunits in the molecular weight range of 11,000 to 27,000 Da. At this mass assignment accuracy level, the sequences of the PT subunits investigated in this study are easily determined based on molecular weight alone. The subunits 1, 2, and 5 of PT were observed to undergo oxidation under normal storage conditions as ammonium sulfate suspension at 2 to 8 degrees C. These oxidized subunits can be separated completely or partially by reverse-phase high-performance liquid chromatography (HPLC) from their native counterparts. For the determination of oxidation sites, the oxidized subunits and their nonoxidized counterparts were fraction collected, trypsin digested, and mapped by LC-MS. The oxidized peptides and their nonoxidized counterparts were further studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to confirm their identities. The methionines at position 212 of subunit 1, at position 89 of subunit 2, and at position 40 of subunit 5 were found to be the primary sites of oxidation.  相似文献   

12.
A modified sol-gel method for a one-step on-column frit preparation for fused-silica capillaries and its utility for peptide separation in LC-MS/MS is described. This method is inexpensive, reproducible, and does not require specialized equipments. Because the frit fabrication process does not damage polyimide coating, the frit-fabricated column can be tightly connected on-line for high pressure LC. These columns can replace any capillary liquid transfer tubing without any specialized connections up-stream of a spray tip column. Therefore multiple columns with different phases can be connected in series for one- or multiple-dimensional chromatography.  相似文献   

13.
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods.  相似文献   

14.
An LC-MS/MS method has been developed for the identification of three species of herb used as the traditional Chinese medicine Langdu, namely Stellera chamaejasme L., Euphorbia ebracteolata Hayata and E. fischeriana Steud. As these herbs contain different mixtures of marker compounds, they could be unambiguously differentiated from each other by comparing their respective characteristic segmental multiple reaction monitoring profiles. The profiles indicated that S. chamaejasme contained daphnetin, skimmetine, stellerin, chamaechromone and neochamaejasmin, E. fischeriana contained ebracteolata compound B, ingenol, jolkinolide B and fischeriana A, whilst E. ebracteolata contained ebracteolata compounds B and C along with ingenol. These results were confirmed from the respective MS/MS spectra. The method has been successfully applied to differentiate these herbs from the related species Alocasia macrorrhiza (L.) Schott and E. kansui Liou.  相似文献   

15.
Atrazine is a herbicide widely used on agricultural commodities. Existing analytical methods to analyze atrazine and its metabolites in biological matrices have various drawbacks. Thus, further development of such methods will be needed to correlate the growing number of toxicological effects associated with atrazine exposure with the concentrations of this compound and its metabolites in plasma, urine, and tissues. The purpose of this study was to develop a broad and sensitive LC-MS method for the analysis of atrazine and its metabolites in mouse urine and plasma. We were able to simultaneously measure atrazine and its major mammalian metabolites, which include didealkyl atrazine, desisopropyl atrazine, desethyl atrazine, atrazine-glutathione conjugate, and atrazine-mercapturate, using preparation procedures that used small sample volumes of plasma and urine (0.25 and 0.5 ml, respectively). Furthermore, derivatization of analytes prior to analysis was unnecessary. This method was used to analyze plasma and urine samples following single in vivo oral exposures of a limited number of mice to atrazine (doses, 5-250 mg/kg body weight) to demonstrate the utility of this LC-MS method. The data obtained from this study suggest that atrazine is rapidly metabolized in mice. Didealkyl atrazine was the most abundant metabolite detected in the urine and plasma samples (approximately 1000 microM in 24-h urine and approximately 100 microM in plasma following the highest dose of atrazine), with lesser quantities of mono N-dealkylated metabolites and thio conjugates of atrazine observed. We also used this methodology in a preliminary study of cytochrome P450-catalyzed metabolism of atrazine in vitro. The results obtained in this study suggest that this method will be a useful tool for the determination of atrazine and its metabolites in future pharmacokinetic studies and for the subsequent development and refinement of biologically based models of atrazine disposition.  相似文献   

16.
One of the important challenges for MALDI imaging mass spectrometry (MALDI-IMS) is the unambiguous identification of measured analytes. One way to do this is to match tryptic peptide MALDI-IMS m/z values with LC-MS/MS identified m/z values. Matching using current MALDI-TOF/TOF MS instruments is difficult due to the variability of in situ time-of-flight (TOF) m/z measurements. This variability is currently addressed using external calibration, which limits achievable mass accuracy for MALDI-IMS and makes it difficult to match these data to downstream LC-MS/MS results. To overcome this challenge, the work presented here details a method for internally calibrating data sets generated from tryptic peptide MALDI-IMS on formalin-fixed paraffin-embedded sections of ovarian cancer. By calibrating all spectra to internal peak features the m/z error for matches made between MALDI-IMS m/z values and LC-MS/MS identified peptide m/z values was significantly reduced. This improvement was confirmed by follow up matching of LC-MS/MS spectra to in situ MS/MS spectra from the same m/z peak features. The sum of the data presented here indicates that internal calibrants should be a standard component of tryptic peptide MALDI-IMS experiments.  相似文献   

17.
The Proteomics Identifications Database (PRIDE, www.ebi.ac.uk/pride ) is one of the main repositories of MS derived proteomics data. Here, we point out the main functionalities of PRIDE both as a submission repository and as a source for proteomics data. We describe the main features for data retrieval and visualization available through the PRIDE web and BioMart interfaces. We also highlight the mechanism by which tailored queries in the BioMart can join PRIDE to other resources such as Reactome, Ensembl or UniProt to execute extremely powerful across‐domain queries. We then present the latest improvements in the PRIDE submission process, using the new easy‐to‐use, platform‐independent graphical user interface submission tool PRIDE Converter. Finally, we speak about future plans and the role of PRIDE in the ProteomExchange consortium.  相似文献   

18.
Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. In spectral library searching, a spectral library is first meticulously compiled from a large collection of previously observed peptide MS/MS spectra that are conclusively assigned to their corresponding amino acid sequence. An unknown spectrum is then identified by comparing it to all the candidates in the spectral library for the most similar match. This review discusses the basic principles of spectral library building and searching, describes its advantages and limitations, and provides a primer for researchers interested in adopting this new approach in their data analysis. It will also discuss the future outlook on the evolution and utility of spectral libraries in the field of proteomics.  相似文献   

19.
The formation of disulfide bonds between cysteine residues is crucial for the stabilization of native protein structures and, thus, determination of disulfide linkages is an important facet of protein structural characterization. Nonetheless, the identification of disulfide bond linkages remains a significant analytical challenge, particularly in large proteins with complex disulfide patterns. Herein, we have developed a new LC/MS strategy for rapid screening of disulfides in an intact protein mixture after a straightforward reduction step with tris(2‐carboxyethyl)phosphine. LC/MS analysis of reduced and nonreduced protein mixtures quickly revealed disulfide‐containing proteins owing to a 2 Da mass increase per disulfide reduction and, subsequently, the total number of disulfide bonds in the intact proteins could be determined. We have demonstrated the effectiveness of this method in a protein mixture composed of both disulfide‐containing and disulfide‐free proteins. Our method is simple (no need for proteolytic digestion, alkylation, or the removal of reducing agents prior to MS analysis), high throughput (fast on‐line LC/MS analysis), and reliable (no S–S scrambling), underscoring its potential as a rapid disulfide screening method for proteomics applications.  相似文献   

20.
Kota U  Goshe MB 《Phytochemistry》2011,72(10):1040-1060
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号