首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green-revertible albino is a novel type of chlorophyll deficiency in rice (Oryza sativa L.), which is helpful for further research in chlorophyll synthesis and chloroplast development to illuminate their molecular mechanism. In the previous study, we had reported a single recessive gene, gra(t), controlling this trait on the long arm of chromosome 2. In this paper, we mapped the gra(t) gene using 1,936 recessive individuals with albino phenotype in the F2 population derived from the cross between themo-photoperiod-sensitive genic male-sterile (T/PGMS) line Pei'ai 64S and the spontaneous mutant Qiufeng M. Eventually, it was located to a confined region of 42.4 kb flanked by two microsatellite markers RM2-97 and RM13553. Based on the annotation results of RiceGAAS system, 11 open reading frames (ORFs) were predicted in this region. Among them, ORF6 was the most possible gene related to chloroplast development, which encoded the chloroplast protein synthesis elongation factor Tu in rice. Therefore, we designated it as the candidate gene of gra(t). Sequence analysis indicated that only one base substitution C to T occurred in the coding region, which caused a missense mutation (Thr to Ile) in gra(t) mutant. These results are very valuable for further study on gra(t) gene.  相似文献   

2.
水稻苗期低温白化突变是水稻在发育早期对低温胁迫的一种适应性,是一种受发育和温度控制的条件表达,它与其他水稻白化突变有本质的不同.本研究利用便携式叶绿素测量仪测定了白化时期植株的叶绿素含量和用透射电镜观察了叶绿体的结构变化.结果发现叶绿素平均含量仅为1.2(SPAD),而叶绿体也不能正常发育仅有囊泡状结构.通过与9311的正反交实验及子代的分离表现证明该性状受一个隐性核基因的控制.另外利用SSR分子标记技术将该基因定位在第8染色体上,两侧最近的SSR标记RM5068和RM3702分别距基因0.5~1.1 cM和4.9 cM,基因被定位在约6个cM的区间内.我们将该基因暂时命名为al12.  相似文献   

3.
Seedling albino mutation resistant to low temperature is an adaptability of rice (Oryza sativa L.) to cold. The mutant, a conditional expression controlled by development and temperature, differs from other albino mutants. The chlorophyll content of the mutant was measured using a portable chlorophyll meter, and the ultrastructure of the chloroplast was observed using a transmission electron microscope. Chlorophyll content was 1.2 SPAD, and the chloroplast did not develop, with only small vesicle-like structures. A segregation analysis of the reciprocal crosses between the albino mutation line with the rice line 9311 demonstrated that the albino trait was controlled by a single recessive gene, which was flanked by SSR markers RM5068 and RM3702 on the short arm of chromosome 8 with a distance of 0.5-1.1 cM and 4.9 cM, respectively. This gene was mapped within a 6 cM interval region and was tentatively referred to as al12.  相似文献   

4.
植物叶色白化研究进展   总被引:3,自引:0,他引:3  
植物叶色白化是一类明显和常见的叶绿素缺失突变,在植物光合作用机理、激素生理、核一质基因组相互作用、遗传育种等理论研究和实际应用方面均具有无可替代的价值。主要综述了近年来国内外有关白化突变体与叶绿素合成的关系、影响白化的内外因素、相关基因的克隆以及克服白化的途径等方面的研究进展,旨在为深入研究植物叶色白化突变提供参考。  相似文献   

5.
Protoplasts of a cytoplasmic albino mutant of Nicotiana tabacum L. characterized by a deficient chloroplast genome were fused with protoplasts of a nitrate-reductase deficient mutant (NR-) of N. tabacum. Somatic hybrids were obtained where the genome of the NR- mutant was complemented by the cytoplasmic albino mutant which could synthesize an active nitrate reductase, and the chlorophyll deficiency in the albino mutant was restored by the chloroplasts from the NR- mutant. Cybrids were also obtained in which the deficient plastids of the cytoplasmic albino mutant were replaced by normal chloroplasts from the NR- mutant. The system used permitted a simple selection of the hybrids and the cybrids. The NR- mutant was excluded at the cellular level by transfer of the cells to medium deficient in reduced nitrogen. The cytoplasmic albino mutant grew well on the selective nitrate medium. However, during callus formation, clear differences in the morphology and pigmentation of the calli were found which permitted selection for photoautotrophy at the callus level. The hybrid or cybrid nature of the plants was confirmed by examination of their morphology and chromosome number. Although the fusion partners come from the same species, only one plant showed the white-green variegated pattern typical of that of the cytoplasmic albino parent, indicating that segregation of plastids occurred during development of the calli and regeneration of the plants.  相似文献   

6.
7.
8.
Su N  Hu ML  Wu DX  Wu FQ  Fei GL  Lan Y  Chen XL  Shu XL  Zhang X  Guo XP  Cheng ZJ  Lei CL  Qi CK  Jiang L  Wang H  Wan JM 《Plant physiology》2012,159(1):227-238
The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).  相似文献   

9.
“White Dove” is a mutant in kale (Brassica oleracea var. acephala f. tricolor), which exhibits a mutant albino phenotype in the interior of the plant under low temperature conditions. Chlorophyll content in “White Dove” was dramatically reduced under low temperature conditions, while the content in “Green Dove” decreased slightly under the same conditions. The levels of five chlorophyll precursors suggested that chlorophyll biosynthesis in white kale was inhibited by low temperature stress at the step of Pchlide. However, Mg-Proto IX was not inhibited in white kale grown under low temperature conditions. The results of quantitative RT-PCR illustrated that the chlorophyll biosynthetic genes in the white cultivar were dramatically down-regulated by low temperature stress from the step of POR, while CISC and DBB1B in the white cultivar were dramatically induced under low temperature conditions. The results of transmission electron microscopy analysis showed that there were normal chloroplasts in the young leaves of white kale grown at 20 °C, whereas proplastids were observed in white kale grown at 5 °C. These results strongly suggested that low-temperature stress significantly inhibited plastid development in the young leaves of white kale, and repressed chlorophyll biosynthesis at the step of Pchlide by down-regulating the expression of downstream chlorophyll biosynthetic genes, resulting in undifferentiated proplastids and the albino phenotype observed in young leaves. Several genes associated with chlorophyll accumulation were also affected by low temperature conditions in white kale, especially CISC and DBB1B.  相似文献   

10.
The chloroplasts of wheat have chanced greatly at high temperature condition(34℃). When wheat grown at 34℃ for 10 days, its chlorophyll content was 6 times less than that under the normal condition(22℃). The ribosomes were isolated from the leaves by sucrose density gradient centrifugation. It is found that only 80 S ribosomes existed in wheat leaves grown at the high temperature and the formation of 70 S ribosomes is specifically prevented. Since the absence of 70 S ribosomes in chloroplast, proteins synthesis can no longer proceed. Analysis of SDS-polyacrylamide gel electrophoresis indicates that the bands of chloroplast proteins from the leaves of wheat at the high temperature are less than those under normal condition. One of the poly- peptides the large subunit(MW=57000 daltons) of ribulose bisphosphate carboxylase, which is coded for by chloroplast genome and synthesized on 70 S ribosome in chloroplast, was lost. The photosynthetic intensity is decreased due to the blocking synthesis in chloroplast of some polypeptides which play the important role in photosynthesis.  相似文献   

11.
We report here the isolation and characterization of a cotyledon-specific albino locus of Arabidopsis, WHITE COTYLEDONS (WCO). This recessive mutation in the WCO locus, located on the top of Chromosome 1, results in albino cotyledons but green true leaves. An accumulation profile of chlorophylls and ultrastructure of chloroplasts indicate that WCO is necessary for development of functional chloroplasts in cotyledons but is dispensable in true leaves. This was further supported by the fact that the mutants request feeding of sucrose for their survival at the early seedling stage where true leaves have not emerged, but the mutants which have developed true leaves are able to grow autotrophically without sucrose supplementation. The wco mutants accumulate low levels of chloroplast mRNA encoding photosynthesis-related proteins and have a specific defect in 16S rRNA maturation in a cotyledon-specific manner. Although wco mutants exhibited abnormal chloroplasts and chloroplast gene expression in cotyledons, nuclear genes for photosynthetic components are expressed at similar levels to those found in wild-type siblings. This lack of suppression of the nuclear genes is not due to a defect in the signaling of the so-called "plastid factor" to the nucleus since normal suppression of the nuclear genes was observed in response to the photo-oxidative damage due to norflurazon application.  相似文献   

12.
RNA编辑是一种转录后基因加工修饰现象,广泛存在于高等植物细胞器中。已有研究表明,RNA编辑与植物发生白化或者黄化有关。通过PCR、RT-PCR及测序的方法,对具有阶段性白化特性的小麦(Triticum aestivum)返白系FA85及其野生型矮变一号(Aibian 1)的叶绿体蛋白质编码基因RNA编辑位点进行了测定,在14个基因上发现了26个编辑位点。有5个编辑位点在2个株系之间存在编辑效率的差异,且这些差异的位点均位于编码叶绿体RNA聚合酶的基因上,其中3个位点编辑前后对应的蛋白质二级结构可能有差异。对2个株系叶绿体中PEP、NEP及PEP、NEP共同依赖基因转录水平的检测显示,除psbA和clpP外,其它基因在小麦返白系中的转录水平均有不同程度的下降。这种转录水平的显著下降及叶绿体RNA聚合酶基因上RNA编辑位点编辑效率的改变,可能与小麦返白系叶片的返白有关。  相似文献   

13.
14.
15.
To gain a better understanding of gene expression in bamboo (Bambusa edulis Murno), we have used a combination of suppressive subtractive hybridization (SSH), microarray hybridization analysis, sequencing, and bioinformatics to identify bamboo genes differentially expressed in a bamboo albino mutant. Ten expressed sequence tags (ESTs) were found to be differentially expressed; these were isolated and sequenced. RT-PCR analysis of these ESTs supported the results of the microarray analysis. Six ESTs that were nucleus-encoded exhibited differential expression patterns in the green wild-type bamboo relative to the albino mutant. These genes (exception being the Rubisco small subunit) were non-photosynthesis-related genes. The development of a specific SSH cDNA library in which most of the chloroplast-encoded or photosynthesis-related genes had been subtracted proved to be useful for studying the function of non-photosynthesis-related genes in the albino bamboo mutants with aberrant chloroplast genome. The combined use of this SSH library with microarray analysis will provide a powerful analytical tool for future studies of the bamboo genome.  相似文献   

16.
Lu XM  Hu XJ  Zhao YZ  Song WB  Zhang M  Chen ZL  Chen W  Dong YB  Wang ZH  Lai JS 《Molecular plant》2012,5(5):1100-1112
IspH is a key enzyme in the last step of the methyl-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.  相似文献   

17.
We report the recovery of a nuclear recessive mutation in Nicotiana sylvestris (Spegazzini and Comes) producing a conditional disruption in the pathway for synthesis of chlorophyll a and b and carotenoids which is fully reversible by exogenous thiamine (0.3 micromolar). In the absence of supplemental thiamine, chlorophyll levels declined by 50% after 5 days, and fell to undetectable levels by 11 days. Mitochondrial (KCN sensitive) respiration rates remained normal in albino leaves (80% loss of chlorophyll), suggesting that chlorosis results primarily from a deficiency of thiamine in the chloroplasts. After thiamine removal, mutant plants produced at least 10 albino leaves with a substantial capacity for growth (0-15 centimeters; 70-fold increase in area), demonstrating sustained operation of many cellular functions in spite of chloroplast disruption. Activities of the plastid isozymes of phosphoglucomutase and phosphoglucoisomerase in albino leaves indicated that the decline in pigment synthesis does not result from a general loss of metabolic activity in chloroplast. Plastid pyruvate dehydrogenase from mutant and wild-type plants displayed a similar affinity for thiamine pyrophosphate, showing that chlorosis does not result from an alteration in this enzyme. Growth of albino leaves and ultrastructural evidence for thylakoid membranes in the chloroplasts suggest that a certain level of fatty acid synthesis is maintained after the interruption of pigment synthesis. Since thiamine deprivation is expected to block production of acetyl-coenzyme A from pyruvate by pyruvate dehydrogenase, acetyl-coenzyme A supporting fatty acid synthesis in albino leaves may be derived solely from mitochondrial acetate.  相似文献   

18.
The light-independent pathway of chlorophyll synthesis which occurs in some lower plants and algae is still largely unknown. We have characterized a chloroplast mutant, H13, of Chlamydomonas reinhardtii which is unable to synthesize chlorophyll in the dark and is also photosystem I deficient. The mutant has a 2.8 kb deletion as well as other rearrangements of its chloroplast genome. By performing particle gun mediated chloroplast transformation of H13 with defined wild-type chloroplast DNA fragments, we have identified a new chloroplast gene, chlN, coding for a 545 amino acid protein which is involved in the light-independent accumulation of chlorophyll, probably at the step of reduction of protochlorophyllide to chlorophyllide. The chlN gene is also found in the chloroplast genomes of liverwort and pine, but is absent from the chloroplast genomes of tobacco and rice.  相似文献   

19.
20.
Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m?2 s?1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号