首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latarcins are linear, α-helical antimicrobial peptides purified from the venom of the Central Asian spider Lachesana tarabaevi, with lytic activity against Gram-positive and Gram-negative bacteria, erythrocytes, and yeast at micromolar concentrations. In this work, we investigated the role of the hinge in latarcin 2a (ltc2a, GLFGKLIKKFGRKAISYAVKKARGKH-COOH), which adopts a helix–hinge–helix conformation in membrane-mimicking environments, on peptide–membrane interactions and its potential effect on the selective toxicity of the peptide. A modified latarcin 2a, ltc2aG11A, obtained by replacing the glycine at position 11 with alanine (ltc2aG11A, GLFGKLIKKFARKAISYAVKKARGKH-COOH), adopts a more rigid structure due to the reduced conformational flexibility. Langmuir monolayer measurements combined with atomic force microscopy and X-ray photoemission electron microscopy (X-PEEM) indicate that both peptides bind and insert preferentially into anionic compared with zwitterionic phospholipid monolayers. Modified ltc2aG11A was found to be more disruptive of supported phospholipid bilayer modeling mammalian cell membrane. However, no considerable difference in lytic activity of the two peptides toward bacterial membrane was found. Overall the data indicate that decrease in the flexibility of ltc2a induced by the modification in the hinge region is likely to increase the peptide’s nonspecific interactions with zwitterionic cell membranes and potentially increase its toxicity against eukaryotic cells.  相似文献   

2.
Latarcins, linear peptides from the Lachesana tarabaevi spider venom, exhibit a broad-spectrum antimicrobial activity, likely acting on the bacterial cytoplasmic membrane. We study their spatial structures and interaction with model membranes by a combination of experimental and theoretical methods to reveal the structure-activity relationship. In this work, a 26 amino acid peptide, Ltc1, was investigated. Its spatial structure in detergent micelles was determined by (1)H nuclear magnetic resonance (NMR) and refined by Monte Carlo simulations in an implicit water-octanol slab. The Ltc1 molecule was found to form a straight uninterrupted amphiphilic helix comprising 8-23 residues. A dye-leakage fluorescent assay and (31)P NMR spectroscopy established that the peptide does not induce the release of fluorescent marker nor deteriorate the bilayer structure of the membranes. The voltage-clamp technique showed that Ltc1 induces the current fluctuations through planar membranes when the sign of the applied potential coincides with the one across the bacterial inner membrane. This implies that Ltc1 acts on the membranes via a specific mechanism, which is different from the carpet mode demonstrated by another latarcin, Ltc2a, featuring a helix-hinge-helix structure with a hydrophobicity gradient along the peptide chain. In contrast, the hydrophobic surface of the Ltc1 helix is narrow-shaped and extends with no gradient along the axis. We have also disclosed a number of peptides, structurally homologous to Ltc1 and exhibiting similar membrane activity. This indicates that the hydrophobic pattern of the Ltc1 helix and related antimicrobial peptides specifies their activity mechanism. The latter assumes the formation of variable-sized lesions, which depend upon the potential across the membrane.  相似文献   

3.
Chronic myeloid leukemia is a stem cell disease with the presence of Philadelphia chromosome generated through reciprocal translocation of chromosome 9 and 22. The use of first- and second-generation tyrosine kinase inhibitors has been successful to an extent. However, resistance against such drugs is an emerging problem. Apart from several drug-resistant mechanisms, drug influx/efflux ratio appears to be one of the key determinants of therapeutic outcomes. In addition, intracellular accumulation of drug critically depends on cell membrane fluidity and lipid raft dynamics. Previously, we reported two novel cell-penetrating peptides (CPPs), namely, cationic IR15 and anionic SR11 present in tryptic digest of Abrus agglutinin. Here, the potential of IR15 and SR11 to influence intracellular concentration of imatinib has been evaluated. Fluorescent correlation spectroscopy and lifetime imaging were employed to map membrane fluidity and lipid raft distribution following peptide-drug co-administration. Results show that IR15 and SR11 are the two CPPs which can modulate membrane fluidity and lipid raft distribution in K562 cells. Both IR15 and SR11 significantly reduce the viability of CML cells in the presence of imatinib by increasing the intracellular accumulation of the drug.  相似文献   

4.
Lipid rafts are microdomains of the phospholipid bilayer, proposed to form semi-stable "islands" that act as a platform for several important cellular processes; major classes of raft-resident proteins include signalling proteins and glycosylphosphatidylinositol (GPI)-anchored proteins. Proteomic studies into lipid rafts have been mainly carried out in mammalian cell lines and single cell organisms. The nematode Caenorhabditis elegans, the model organism with a well-defined developmental profile, is ideally suited for the study of this subcellular locale in a complex developmental context. A study of the lipid raft proteome of C. elegans is presented here. A total of 44 proteins were identified from the lipid raft fraction using geLC-MS/MS, of which 40 have been determined to be likely raft proteins after analysis of predicted functions. Prediction of GPI-anchoring of the proteins found 21 to be potentially modified in this way, two of which were experimentally confirmed to be GPI-anchored. This work is the first reported study of the lipid raft proteome in C. elegans. The results show that raft proteins, including numerous GPI-anchored proteins, may have a variety of potentially important roles within the nematode, and will hopefully lead to C. elegans becoming a useful model for the study of lipid rafts.  相似文献   

5.
Latarcins (Ltc), linear peptides (ca. 25 amino acid long) isolated from the venom of the Lachesana tarabaevi spider, exhibit a broad-spectrum antibacterial activity, most likely acting on the bacterial plasmatic membrane. We study the structure-activity relationships in the series of these compounds. At the first stage, we investigated the spatial structure of one of the peptides, Ltc2a, and its mode of membrane perturbation. This was done by a combination of experimental and theoretical methods. The approach includes (i) structural study of the peptide by CD spectroscopy in phospholipid liposomes and by (1)H NMR in detergent micelles, (ii) determination of the effect on the liposomes by a dye leakage fluorescent assay and (31)P NMR spectroscopy, (iii) refinement of the NMR-derived spatial structure via Monte Carlo simulations in an implicit water-octanol slab, and (iv) calculation of the molecular hydrophobicity potential. The molecule of Ltc2a was found to consist of two helical regions (residues 3-9 and 13-21) connected via a poorly ordered fragment. The effect of the peptide on the liposomes suggests the carpet mechanism of the membrane deterioration. This is also supported by the analysis of hydrophobic/hydrophilic characteristics of Ltc2a and homologous antimicrobial peptides. These peptides exhibiting a helix-hinge-helix structural motif are characterized by a distinct and feebly marked amphiphilicity of their N- and C-terminal helices, respectively, and by a hydrophobicity gradient along the peptide chain. The approach we suggested may be useful in studying not only other latarcins but also a wider class of membrane-active peptides.  相似文献   

6.
Third Harmonic Generation (THG) microscopy as a non‐invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2‐positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer‐specific profiles, correlating lipid raft‐corresponding spectra to THG signal, associating thus THG to chemical information.

THG imaging of a cancer cell.  相似文献   


7.
Fusion peptides mimic the membrane fusion activities of the larger viral proteins from which they derive their sequences. A possible mode of activity involves their oblique insertion into lipid bilayers, causing membrane disruption by promoting highly curved hemifusion intermediates, leading to fusion. We have determined the location and orientation of the simian immunodeficiency virus (SIV) fusion peptide in planar lipid bilayers using neutron lamellar diffraction. The helical axis of the peptide adopts an angle of 55 degrees relative to the membrane normal, while it positions itself nearest the lipid bilayer surface. This is the first direct observation of the structural interaction between a fusion peptide and a phospholipid bilayer.  相似文献   

8.
Analogues of latarcins Ltc1 and Ltc3b, antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi capable of formation of amphiphilic structures in membranes without involvement of disulfide bonds, were synthesized. The amino acid sequences of the analogues correspond to immature forms of these peptides, each of them containing an additional C-terminal amino acid residue. It is concluded from the study of the biological activity of the synthesized peptides that the posttranslational C-terminal amidation of Ltc3b is a functionally important modification that ensures a high activity of the mature peptide. The lipid composition was shown to affect the interaction of synthesized peptides with artificial membranes. The analogue of Ltc3b manifested the highest activity on cholesterol-containing membranes. The mechanism of action of the studied antimicrobial peptides on membranes is discussed.  相似文献   

9.
Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic -helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane -helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.This paper was submitted as a record of the 2002 Australian Biophysical Society  相似文献   

10.
Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation.  相似文献   

11.
To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.  相似文献   

12.
In a previous report we described the selection of potent, beta-sheet pore-forming peptides from a combinatorial library designed to mimic membrane-spanning beta-hairpins (Rausch, J. M., Marks, J. R., and Wimley, W. C. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 10511-10515). Here, we characterize their mechanism of action and compare the structure-function relationships in lipid vesicles to their activity in biological membranes. The pore-forming peptides bind to membrane interfaces and self-assemble into beta-sheets that cause a transient burst of graded leakage across the bilayers. Despite the continued presence of the structured peptides in the bilayer, at most peptide concentrations leakage is incomplete and ceases quickly after peptide addition with a deactivation half-time of several minutes. Molecules up to 3,000 Da escape from the transient pores, but much larger molecules do not. Fluorescence spectroscopy and quenching showed that the peptides reside mainly on the bilayer surface and are partially exposed to water, rather than in a membrane-spanning state. The "carpet" or "sinking raft" model of peptide pore formation offers a viable explanation for our observations and suggests that the selected pore-formers function with a mechanism that is similar to the natural pore-forming antimicrobial peptides. We therefore also characterized the antimicrobial and cytotoxic activity of these peptides. All peptides studied, including non-pore-formers, had sterilizing antimicrobial activity against at least some microbes, and most have low activity against mammalian cell membranes. Thus, the structure-function relationships that were apparent in the vesicle systems are similar to, but do not correlate completely with, the activity of the same peptides in biological membranes. However, of the peptides tested, only the pore-formers selected in the high-throughput screen have potent, broad-spectrum sterilizing activity against Gram-positive and Gram-negative bacteria as well as against fungi, while having only small lytic effects on human cells.  相似文献   

13.
The interaction of A beta peptides with the lipid matrix of neuronal cell membranes plays an important role in the pathogenesis of Alzheimer's disease. By using EPR and CD spectroscopy, we found that in the presence of Cu(2+) or Zn(2+), pH, cholesterol, and the length of the peptide chain influenced the interaction of these peptides with lipid bilayers. In the presence of Zn(2+), A beta 40 and A beta 42 both inserted into the bilayer over the pH range 5.5-7.5, as did A beta 42 in the presence of Cu(2+). However, A beta 40 only penetrated the lipid bilayer in the presence of Cu(2+) at pH 5.5-6.5; at higher pH there was a change in the Cu(2+) coordination sphere that inhibited membrane insertion. In the absence of the metals, insertion of both peptides only occurred at pH < 5.5. Raising cholesterol to 0.2 mol fraction of the total lipid inhibited insertion of both peptides under all conditions investigated. Membrane insertion was accompanied by the formation of alpha-helical structures. The nature of these structures was the same irrespective of the conditions used, indicating a single low energy structure for A beta in membranes. Peptides that did not insert into the membrane formed beta-sheet structures on the surface of the lipid.  相似文献   

14.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

15.
In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide–lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria.
Graphical Abstract Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.
  相似文献   

16.
The disruption of intracellular calcium homeostasis plays a central role in the pathology of Alzheimer's disease, which is also characterized by accumulation of the amyloid-beta peptides Abeta40 and Abeta42. These amphipathic peptides may become associated with neuronal membranes and affect their barrier function, resulting in the loss of calcium homeostasis. This suggestion has been extensively investigated by exposing protein-free model membranes, either vesicles or planar bilayers, to soluble Abeta. Primarily unstructured Abeta has been shown to undergo a membrane-induced conformational change to either primarily beta-structure or helical structure, depending, among other factors, on the model membrane composition. Association of Abeta renders lipid bilayers permeable to ions but there is dispute whether this is due to the formation of discrete transmembrane ion channels of Abeta peptides, or to a non-specific perturbation of bilayer integrity by lipid head group-associated Abeta. Here, we have attempted incorporation of Abeta in the hydrophobic core of zwitterionic bilayers, the most simple model membrane system, by preparing proteoliposomes by hydration of a mixed film of Abeta peptides and phosphatidylcholine (PC) lipids. Despite the use of a solvent mixture in which Abeta40 and Abeta42 are almost entirely helical, the Abeta analogs were beta-structured in the resulting vesicle dispersions. When Abeta40-containing vesicles were fused into a zwitterionic planar bilayer, the typical irregular "single channel-like" conductance of Abeta was observed. The maximum conductance increased with additional vesicle fusion, while still exhibiting single channel-like behavior. Supported bilayers formed from Abeta40/PC vesicles did not exhibit any channel-like topological features, but the bilayer destabilized in time. Abeta40 was present primarily as beta-sheets in supported multilayers formed from the same vesicles. The combined observations argue for a non-specific perturbation of zwitterionic bilayers by surface association of small amphipathic Abeta40 assemblies.  相似文献   

17.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

18.
Analogues of latarcins Ltc1 and Ltc3b, antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi capable of formation of amphiphilic structures in membranes without involvement of disulfide bonds, were synthesized. The amino acid sequences of the analogues correspond to immature forms of these peptides, each of them containing an additional C-terminal amino acid residue. It is concluded from the study of the biological activity of the synthesized peptides that the posttranslational C-terminal amidation of Ltc3b is a functionally important modification that ensures a high activity of the mature peptide. The lipid composition was shown to affect the interaction of synthesized peptides with artificial membranes. The analogue of Ltc3b manifested the highest activity on cholesterol-containing membranes. The mechanism of action of the studied antimicrobial peptides on membranes is discussed.  相似文献   

19.
Interactions between membrane bilayers and peptides/proteins are ubiquitous throughout a cell. To determine the structure of membrane bilayers and the associated peptides/proteins, model systems such as supported lipid bilayers are often used. It has been difficult to directly investigate the interactions between a single membrane bilayer and peptides/proteins without exogenous labeling. In this work we demonstrate that sum frequency generation vibrational spectroscopy can be employed to study the interactions between peptides/proteins and a single lipid bilayer in real time, in situ, and without exogenous labeling. Using melittin and a dipalmitoyl phosphatidylglycerol bilayer as a model system, we monitored the C-H and C-D stretching signals from isotopically symmetric or asymmetric dipalmitoyl phosphatidylglycerol bilayers during their interaction with melittin. It has been found that the extent and kinetics of bilayer perturbation induced by melittin are very sensitive to melittin concentration. Such concentration dependence is correlated to melittin's mode of action. Melittin is found to function via the early and late stage of the carpet model at low and high concentrations, respectively, whereas the toroidal model is probable at intermediate concentrations. This research illustrates the potential of sum frequency generation as a biophysical technique to monitor individual leaflet structure of lipid bilayers in real time during their interactions with biomolecules.  相似文献   

20.
The fusion peptide of influenza hemagglutinin is crucial for cell entry of this virus. Previous studies showed that this peptide adopts a boomerang-shaped structure in lipid model membranes at the pH of membrane fusion. To examine the role of the boomerang in fusion, we changed several residues proposed to stabilize the kink in this structure and measured fusion. Among these, mutants E11A and W14A expressed hemagglutinins with hemifusion and no fusion activities, and F9A and N12A had no effect on fusion, respectively. Binding enthalpies and free energies of mutant peptides to model membranes and their ability to perturb lipid bilayer structures correlated well with the fusion activities of the parent full-length molecules. The structure of W14A determined by NMR and site-directed spin labeling features a flexible kink that points out of the membrane, in sharp contrast to the more ordered boomerang of the wild-type, which points into the membrane. A specific fixed angle boomerang structure is thus required to support membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号