首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP7 and IP8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP4 and IP5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

2.
In this study, we investigated the roles of very long-chain fatty acid (VLCFA) synthesis by fatty acid elongase 3 (ELO3) in the regulation of telomere length and life span in the yeast Saccharomyces cerevisiae. Loss of VLCFA synthesis via deletion of ELO3 reduced telomere length, and reconstitution of the expression of wild type ELO3, and not by its mutant with decreased catalytic activity, rescued telomere attrition. Further experiments revealed that alterations of phytoceramide seem to be dispensable for telomere shortening in response to loss of ELO3. Interestingly, telomere shortening in elo3Delta cells was almost completely prevented by deletion of IPK2 or KCS1, which are involved in the generation of inositol phosphates (IP4, IP5, and inositol pyrophosphates). Deletion of IPK1, which generates IP6, however, did not affect regulation of telomere length. Further data also suggested that elo3Delta cells exhibit accelerated chronologic aging, and reduced replicative life span compared with wild type cells, and deletion of KCS1 helped recover these biological defects. Importantly, to determine downstream mechanisms, epistasis experiments were performed, and data indicated that ELO3 and YKU70/80 share a common pathway for the regulation of telomere length. More specifically, chromatin immunoprecipitation assays revealed that the telomere binding and protective function of YKu80p in vivo was reduced in elo3Delta cells, whereas its non-homologues end-joining function was not altered. Deletion of KCS1 in elo3Delta cells recovered the telomere binding and protective function of Ku, consistent with the role of KCS1 mutation in the rescue of telomere length attrition. Thus, these findings provide initial evidence of a possible link between Elo3-dependent VLCFA synthesis, and IP metabolism by KCS1 and IPK2 in the regulation of telomeres, which play important physiological roles in the control of senescence and aging, via a mechanism involving alterations of the telomere-binding/protection function of Ku.  相似文献   

3.
4.
Over 30 inositol polyphosphates are known to exist in mammalian cells; however, the majority of them have uncharacterized functions. In this study we investigated the molecular basis of synthesis of highly phosphorylated inositol polyphosphates (such as inositol tetrakisphosphate, inositol pentakisphosphate (IP5), and inositol hexakisphosphate (IP6)) in rat cells. We report that heterologous expression of rat inositol polyphosphate kinases rIPK2, a dual specificity inositol trisphosphate/inositol tetrakisphosphate kinase, and rIPK1, an IP5 2-kinase, were sufficient to recapitulate IP6 synthesis from inositol 1,4,5-trisphosphate in mutant yeast cells. Overexpression of rIPK2 in Rat-1 cells increased inositol 1,3,4,5,6-pentakisphosphate (I(1,3,4,5,6)P5) levels about 2-3-fold compared with control. Likewise in Rat-1 cells, overexpression of rIPK1 was capable of completely converting I(1,3,4,5,6)P5 to IP6. Simultaneous overexpression of both rIPK2 and rIPK1 in Rat-1 cells increased both IP5 and IP6 levels. To reduce IPK2 activity in Rat-1 cells, we introduced vector-based short interference RNA against rIPK2. Cells harboring the short interference RNA had a 90% reduction of mRNA levels and a 75% decrease of I(1,3,4,5,6)P5. These data confirm the involvement of IPK2 and IPK1 in the conversion of inositol 1,4,5-trisphosphate to IP6 in rat cells. Furthermore these data suggest that rIPK2 and rIPK1 act as key determining steps in production of IP5 and IP6, respectively. The ability to modulate the intracellular inositol polyphosphate levels by altering IPK2 and IPK1 expression in rat cells will provide powerful tools to study the roles of I(1,3,4,5,6)P5 and IP6 in cell signaling.  相似文献   

5.
A problem for inositol signaling is to understand the significance of the kinases that convert inositol hexakisphosphate to diphosphoinositol polyphosphates. This kinase activity is catalyzed by Kcs1p in the yeast Saccharomyces cerevisiae. A kcs1Delta yeast strain that was transformed with a specifically "kinase-dead" kcs1p mutant did not synthesize diphosphoinositol polyphosphates, and the cells contained a fragmented vacuolar compartment. Biogenesis of the yeast vacuole also required another functional domain in Kcs1p, which contains two leucine heptad repeats. The kinase activity of Kcs1p was also found to sustain cell growth and integrity of the cell wall and to promote adaptive responses to salt stress. Thus, the synthesis of diphosphoinositol polyphosphates has wide ranging physiological significance. Furthermore, we showed that these phenotypic responses to Kcs1p deletion also arise when synthesis of precursor material for the diphosphoinositol polyphosphates is blocked in arg82Delta cells. This metabolic block was partially bypassed, and the phenotype was partially rescued, when Kcs1p was overexpressed in the arg82Delta cells. This was due, in part, to the ability of Kcs1p to phosphorylate a wider range of substrates than previously appreciated. Our results show that diphosphoinositol polyphosphate synthase activity is essential for biogenesis of the yeast vacuole and the cell's responses to certain environmental stresses.  相似文献   

6.
7.
The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.  相似文献   

8.
In eukaryotes, autophagy is a conserved protein degradation system that degrades cytoplasmic components by encompassing them with double-membrane structures, called autophagosomes, and delivering them to the lytic compartments of vacuoles/lysosomes. Certain Atg proteins are known to be involved in autophagy, yet the identity and function of lipid molecules involved remain largely unknown. We investigated the involvement of sphingolipids in autophagy using Saccharomyces cerevisiae. Inhibiting synthesis of the simplest complex sphingolipid, inositol phosphorylceramide (IPC), resulted in reduced autophagic activities. Similar results were obtained using myriocin, an inhibitor of the first step in sphingolipid synthesis. Our results indicate that sphingolipids, especially IPC, are required for autophagy. Inhibition of sphingolipid synthesis had no effect on formation of Atg12-Atg5 or Atg8-phosphatidylethanolamine conjugates, on maturation of vacuolar proteases, or on formation of the pre-autophagosomal structure (PAS). These results suggest that sphingolipids are not involved in the cellular signaling that leads to formation of the PAS, but may be involved in the process of autophagosome formation.  相似文献   

9.
Autophagy is the bulk degradation of cytosolic materials in lysosomes/vacuoles of eukaryotic cells. In the yeast Saccharomyces cerevisiae, 17 Atg proteins are known to be involved in autophagosome formation. Genome wide analyses have shown that Atg17 interacts with numerous proteins. Further studies on these interacting proteins may provide further insights into membrane dynamics during autophagy. Here, we identify Cis1/Atg31 as a protein that exhibits similar phenotypes to Atg17. ATG31 null cells were defective in autophagy and lost viability under starvation conditions. Localization of Atg31 to pre-autophagosomal structures (PAS) was dependent on Atg17. Coimmunoprecipitation experiments indicated that Atg31 interacts with Atg17. Together, Atg31 is a novel protein that, in concert with Atg17, is required for proper autophagosome formation.  相似文献   

10.
Despite the importance of triacylglycerols (TAG) and steryl esters (SE) in phospholipid synthesis in cells transitioning from stationary-phase into active growth, there is no direct evidence for their requirement in synthesis of phosphatidylinositol (PI) or other membrane phospholipids in logarithmically growing yeast cells. We report that the dga1Δlro1Δare1Δare2Δ strain, which lacks the ability to synthesize both TAG and SE, is not able to sustain normal growth in the absence of inositol (Ino(-) phenotype) at 37 °C especially when choline is present. Unlike many other strains exhibiting an Ino(-) phenotype, the dga1Δlro1Δare1Δare2Δ strain does not display a defect in INO1 expression. However, the mutant exhibits slow recovery of PI content compared with wild type cells upon reintroduction of inositol into logarithmically growing cultures. The tgl3Δtgl4Δtgl5Δ strain, which is able to synthesize TAG but unable to mobilize it, also exhibits attenuated PI formation under these conditions. However, unlike dga1Δlro1Δare1Δare2Δ, the tgl3Δtgl4Δtgl5Δ strain does not display an Ino(-) phenotype, indicating that failure to mobilize TAG is not fully responsible for the growth defect of the dga1Δlro1Δare1Δare2Δ strain in the absence of inositol. Moreover, synthesis of phospholipids, especially PI, is dramatically reduced in the dga1Δlro1Δare1Δare2Δ strain even when it is grown continuously in the presence of inositol. The mutant also utilizes a greater proportion of newly synthesized PI than wild type for the synthesis of inositol-containing sphingolipids, especially in the absence of inositol. Thus, we conclude that storage lipid synthesis actively influences membrane phospholipid metabolism in logarithmically growing cells.  相似文献   

11.
Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.  相似文献   

12.
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4) dual-specificity 6-/3-kinase and an inositol 1,3,4,5,6-pentakisphosphate 2-kinase, respectively. Here we report the identification and characterization of two inositol polyphosphate kinases from Arabidopsis thaliana, designated AtIpk2alpha and AtIpk2beta that are encoded by distinct genes on chromosome 5 and that are ubiquitously expressed in mature tissue. The primary structures of AtIpk2alpha and AtIpk2beta are 70% identical to each other and 12-18% identical to Ipk2s from yeast and mammals. Similar to yeast Ipk2, purified recombinant AtIpk2alpha and AtIpk2beta have 6-/3-kinase activities that sequentially phosphorylate I(1,4,5)P(3) to generate I(1,3,4,5,6)P(5) predominantly via an I(1,4,5,6)P(4) intermediate. While I(1,3,4,5)P(4) is a substrate for the plant Ipk2s, it does not appear to be a detectable product of the IP(3) reaction. Additionally, we report that the plant and yeast Ipk2 have a novel 5-kinase activity toward I(1,3,4,6)P(4) and I(1,2,3,4,6)P(5), which would allow these proteins to participate in at least two proposed pathways in the synthesis of IP(6). Heterologous expression of either plant isoform in an ipk2 mutant yeast strain restores IP(4) and IP(5) production in vivo and rescues its temperature-sensitive growth defects. Collectively our results provide a molecular basis for the synthesis of higher inositol polyphosphates in plants through multiple routes and indicate that the 6-/3-/5-kinase activities found in plant extracts may be encoded by the IPK2 gene class.  相似文献   

13.
14.
Regulation of nuclear processes by inositol polyphosphates   总被引:10,自引:0,他引:10  
Inositide signaling pathways represent a multifaceted ensemble of cellular switches capable of regulating a number of processes, for example, intracellular calcium release, membrane trafficking, chemotaxis, ion channel activity and several nuclear functions. Over 30 inositide messengers are found in eukaryotic cells that may be grouped into two classes: (1) inositol lipids, phosphatidylinositols or phosphoinositides (PIPs) and (2) water-soluble inositol polyphosphates (IPs). This review will focus on inositol polyphosphate kinases (IPK) and inositol pyrophosphate synthases (IPS) responsible for the cellular production of IP(4), IP(5) IP(6) and PP-IPs. Of interest, IPK and IPS proteins localize, in part, within the nucleus and their activities are necessary for proper regulation of gene expression, mRNA export, DNA repair and telomere maintenance. The breadth of nuclear processes regulated and the evolutionary conservation of the genes involved in their synthesis have sparked renewed interest in inositide messengers derived from sequential phosphorylation of inositol 1,4,5-trisphosphate.  相似文献   

15.
Yeast Atg2, an autophagy-related protein, is highly conserved in other fungi and has two homologues in humans, one of which is hAtg2A encoded by the hATG2A/KIAA0404 gene. Region of homology between Atg2 and hAtg2A proteins comprises the C-terminal domain. We used yeast atg2D strain to express the GFP-KIAA0404 gene, its fragment or fusions with yeast ATG2, and study their effects on autophagy. The GFP-hAtg2A protein localized to punctate structures, some of which colocalized with Ape1-RFP-marked preautophagosomal structure (PAS), but it did not restore autophagy in atg2Δ cells. N-terminal fragment of Atg2 and N-terminal fragment of hAtg2A were sufficient for PAS recruitment but were not sufficient to function in autophagy. Neither a fusion of the N-terminal fragment of hAtg2A with C-terminal domain of Atg2 nor a reciprocal fusion were functional in autophagy. hAtg2A, in contrast to yeast Atg2, did not show interaction with the yeast autophagy protein Atg9 but both Atg2 proteins showed interaction with Atg18, a phospholipid-binding protein, in two-hybrid system. Moreover, deletion of ATG18 abrogated PAS recruitment of hAtg2A. Our results show that human hAtg2A can not function in autophagy in yeast, however, it is recruited to the PAS, possibly due to the interaction with Atg18.  相似文献   

16.
An Arabidopsis fatty acid elongase gene, KCS1, with a high degree of sequence identity to FAE1, encodes a 3-ketoacyl-CoA synthase which is involved in very long chain fatty acid synthesis in vegetative tissues, and which also plays a role in wax biosynthesis. Sequence analysis of KCS1 predicted that this synthase was anchored to a membrane by two adjacent N-terminal, membrane-spanning domains. Analysis of a T-DNA tagged kcs1-1 mutant demonstrated the involvement of the KCS1 in wax biosynthesis. Phenotypic changes in the kcs1-1 mutant included thinner stems and less resistance to low humidity stress at a young age. Complete loss of KCS1 expression resulted in decreases of up to 80% in the levels of C26 to C30 wax alcohols and aldehydes, but much smaller effects were observed on the major wax components, i.e. the C29 alkanes and C29 ketones on leaves, stems and siliques. In no case did the loss of KCS1 expression result in complete loss of any individual wax component or significantly decrease the total wax load. This indicated that there was redundancy in the elongase KCS activities involved in wax synthesis. Furthermore, since alcohol, aldehyde, alkane and ketone levels were affected to varying degrees, involvement of the KCS1 synthase in both the decarbonylation and acyl-reduction wax synthesis pathways was demonstrated.  相似文献   

17.
Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97 kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198 kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.  相似文献   

18.
Sphingolipids play critical roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened for yeast mutants showing high sensitivity to Aureobasidin A, an inhibitor of inositol phosphorylceramide synthase, and found that a lack of SAC1 encoding phosphoinositides phosphatase causes high sensitivity to the inhibitor. Double mutation analysis involving the SAC1 and non-essential sphingolipid-metabolizing enzyme genes revealed that csg1Δ, csg2Δ, ipt1Δ or scs7Δ causes synthetic lethality with deletion of SAC1. As previously reported, SAC1-repressed cells exhibited a reduced cellular phosphatidylserine (PS) level, and overexpression of PSS1 encoding PS synthase complemented the growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1-repressive conditions. Furthermore, repression of PSS1 expression resulted in synthetic growth defect with the deletion of CSG1, IPT1 or SCS7. The growth defects of scs7Δ, csg1Δ and ipt1Δ cells under SAC1- or PSS1-repressive conditions were also complemented by overexpression of Arf-GAP AGE1, which encodes a protein related to membrane trafficking. Under SAC1-repressive conditions, scs7Δ, csg1Δ and ipt1Δ cells showed defects in vacuolar morphology, which were complemented by overexpression of each of PSS1 and AGE1. These results suggested that a specific group of sphingolipid-metabolizing enzyme is required for yeast cell growth under impaired metabolism of glycerophospholipids.  相似文献   

19.
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question. Here, we highlight recent studies that provide molecular insights into PAS organization and the role of the endoplasmic reticulum and the vacuole in autophagosome formation.  相似文献   

20.
Suzuki K  Ohsumi Y 《FEBS letters》2007,581(11):2156-2161
Autophagy is a degradation process accompanied by dynamic membrane organization. In the yeast, Saccharomyces cerevisiae, about 30 ATG (autophagy-related) genes have been identified as important genes for autophagy. Among them, 17 are indispensable for formation of the autophagosome, an organelle enclosed by a double lipid bilayer during starvation-induced autophagy. Recently, a central structure for autophagosome generation, termed the pre-autophagosomal structure, was identified. Despite intensive study, many questions regarding the mechanisms underlying autophagosome formation remain unanswered. In this review, we will give an overview of recent studies on the mechanisms of autophagosome formation and discuss these unresolved questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号