首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb +/+ mice and in Leprb db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.  相似文献   

2.
The binding of leptin to hypothalamic neurons elicits inhibition of orexigenic NPY/AgRP neurons and stimulation of anorexigenic POMC/CART neurons. Projections of serotonergic neurons onto POMC neurons suggest that leptin and serotonin converge onto POMC neurons to regulate body weight. We probed the interaction of these pathways by generating transgenic mice overexpressing leptin (LepTg) without 5HT2c receptors. On a chow diet, the lean phenotype of LepTg mice was unaffected by the absence of 5HT2c receptors, whereas on a high fat diet, LepTg/5HT2c receptors knockout mice showed an exacerbation of diet-induced obesity. POMC mRNA levels were low in LepTg, 5HT2c receptors knockout and LepTg/5HT2c receptors knockout mice, demonstrating that perturbations of the 5HT2c receptor and leptin pathways, either alone or in combination, negatively impact on POMC expression. Thus, on a chow diet, leptin action is independent of 5HT2c receptors whereas on a high fat diet 5HT2c receptors are required for the attenuation of obesity.  相似文献   

3.
4.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

5.
6.
Liu T  Kong D  Shah BP  Ye C  Koda S  Saunders A  Ding JB  Yang Z  Sabatini BL  Lowell BB 《Neuron》2012,73(3):511-522
AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To?address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles?in controlling AgRP neurons and determining the cellular and behavioral response to fasting.  相似文献   

7.
Jong-Woo Sohn 《BMB reports》2015,48(4):229-233
The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]  相似文献   

8.
AgRP in energy balance: Will the real AgRP please stand up?   总被引:1,自引:0,他引:1  
The neuropeptide AgRP promotes food intake and weight gain by antagonizing signaling at melanocortin 3 and 4 receptors in the brain, but the limited phenotype of mice lacking AgRP raised questions about its importance. Four recent studies addressed this by creating mice in which AgRP neurons, which also express NPY and GABA, are ablated postnatally, and although details vary, they suggest that AgRP neurons are more essential to feeding and weight gain than is AgRP itself. A recent paper in Cell Metabolism (Wortley et al., 2005) indicates that AgRP itself is important for feeding and weight gain, but only as mice age, and the mechanism may involve dysfunction of the thyroid axis.  相似文献   

9.
Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by alpha-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp(-/-)) mice to examine the physiological role of AgRP. Agrp(-/-) mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp(-/-) mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp(-/-) mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp(-/-);Npy(-/-)) mice to determine whether NPY or AgRP plays a compensatory role in Agrp(-/-) or NPY-deficient (Npy(-/-)) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp(-/-);Npy(-/-) mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.  相似文献   

10.
11.
近年来,因肥胖症所造成的社会问题和医疗负担越发严重。肥胖主要是由于机体能量的摄入与消耗不平衡所致,而中枢神经系统以及相关神经元在机体能量代谢平衡的调控中发挥着重要作用。下丘脑弓状核含有抑食性阿黑皮素原(Proopiomelanocortin,POMC)神经元和促食性神经肽Y (Neuropeptid Y,NPY)/刺鼠相关蛋白(Agouti-related protein,AgRP)神经元,是调控机体摄食行为的主要神经元。研究显示,高脂饮食会诱导POMC神经元中的Rb蛋白发生磷酸化修饰并失活,导致POMC神经元从静息状态重新进入细胞周期循环,进而迅速转向细胞凋亡。高脂饮食也会引起神经元再生抑制,并诱导炎症发生和神经元损伤,使神经元稳态失衡,引发瘦素抵抗,最终导致肥胖症的发生。文中就神经元稳态失衡以及肥胖症等疾病之间的关系进行了综述,希望能为饮食诱导肥胖症等疾病的治疗和预防提供新的方向和思路。  相似文献   

12.
Andrews ZB 《Peptides》2011,32(11):2248-2255
Ghrelin is a stomach hormone, secreted into the bloodstream, that initiates food intake by activating NPY/AgRP neurons in the hypothalamic acruate nucleus. This review focuses on recent evidence that details the mechanisms through which ghrelin activate receptors on NPY neurons and downstream signaling within NPY neurons. The downstream signaling involves a novel CaMKK-AMPK-CPT1-UCP2 pathway that enhances mitochondrial efficiency and buffers reactive oxygen species in order to maintain an appropriate firing response in NPY. Recent evidence that shows metabolic status affects ghrelin signaling in NPY is also described. In particular, ghrelin does not activate NPY neurons in diet-induced obese mice and ghrelin does not increase food intake. The potential mechanisms and implications of ghrelin resistance are discussed.  相似文献   

13.
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction.  相似文献   

14.
Exposure to high-fat diets for prolonged periods results in positive energy balance and obesity, but little is known about the initial physiological and neuroendocrine response of obesity-susceptible strains to high-fat feeding. To assess responses of C57BL/6J mice to high- and low-fat diets, we quantitated the hypothalamic expression of neuropeptides implicated in weight regulation and neuroendocrine function over a 2-wk period. Exposure to high-fat diet increased food consumption over a 2-day period during which leptin levels were increased when assessed by a frequent sampling protocol [area under the curve (AUC): 134.6 +/- 10.3 vs. 100 +/- 12.3, P = 0.03 during first day and 126.5 +/- 8.2 vs. 100 +/- 5.2, P = 0.02 during second day]. During this period, hypothalamic expression of neuropeptide Y (NPY) and agouti-related protein (AgRP) decreased by approximately 30 and 50%, respectively (P < 0.001). After 1 wk, both caloric intake and hypothalamic expression of NPY and AgRP returned toward baseline. After 2 wk, cumulative caloric intake was again higher in the high-fat group, and now proopiomelanocortin (POMC) was elevated by 76% (P = 0.01). This study demonstrates that high-fat feeding induces hyperphagia, hyperleptinemia, and transient suppression of orexigenic neuropeptides during the first 2 days of diet. The subsequent induction of POMC may be a second defense against obesity. Attempts to understand the hypothalamic response to high-fat feeding must examine the changes as they develop over time.  相似文献   

15.
代谢是机体生存和延续的基础,机体通过影响行为并诱发一系列的生理反应,调节代谢状态。能量代谢失衡可能导致机体消瘦或肥胖,甚至会造成生长发育和生殖功能的障碍等。因此,维持机体的能量平衡至关重要,而这一状态的维持受中枢神经系统的严格控制。中枢神经系统,特别是下丘脑,在调节机体生理功能和能量平衡中发挥着重要的作用。下丘脑Kisspeptin被认为在调节性腺轴、营养性发育和生殖中发挥重要作用。近些年来,关于其在能量代谢调控中的作用也引起广泛关注。本文将从能量摄入和能量消耗两个方面对下丘脑Kisspeptin在能量代谢调控中的作用进行综述,以期为防治因能量失衡诱发的代谢性疾病提供新的研究思路和依据。  相似文献   

16.
17.
The hypothalamic arcuate nucleus is a complex structure containing both orexigenic and anorexigenic neurons, coordinately regulated by leptin and energy state. In their recent Nature Neuroscience study, Aponte et al. (2011) use optogenetic technology to provide a glimpse into the consequences of exclusive activation of either NPY/AgRP or POMC neurons.  相似文献   

18.
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet‐induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2‐inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.  相似文献   

19.

Objective

Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY) and suppressor proopiomelanocortin (POMC) in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD) consumption are unclear.

Research Design and Methods

Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control). At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid) metabolic markers were measured.

Results

Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain.

Conclusions

Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanims. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.  相似文献   

20.
Maternal obesity due to long‐term high‐fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague–Dawley rats (8 weeks old) were fed a cafeteria‐style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre‐ and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin‐4 receptor (MC4R) and its downstream target single‐minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti‐related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号