首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane nanotubes are thin membranous projections that physically connect two cells. While nanotubes have been studied in human natural killer (NK) cells and are implicated in aiding NK cell cytotoxic function, requirements for their formation to susceptible target cells remain incompletely understood. Here we demonstrate that the CD2-CD58/48 receptor-ligand interaction promotes and is required for nanotube formation in human NK cells. In the CD2 NK cell line YTS, a stable CD2 expression variant enabled effective nanotube formation, and was associated with better cytotoxic function. Importantly, only interactions between an NK cell and a susceptible target cell were associated with multiple nanotubes and the number of nanotubes was inversely correlated with their length. Quantitative live cell fluorescence microscopy of CD2 nanotubes revealed time-dependent enrichment and localization of CD2 to the nanotube tip, and blocking CD2 receptor-ligand interactions prevented nanotube formation. Increased nanotube formation was not simply a feature of receptor-ligand pairing, as a KIR-MHC interaction in the same cell line system failed to promote nanotube formation. Additionally, blocking LFA-1-ICAM and 2B4-CD48 receptor-ligand interactions failed to inhibit nanotube formation. Thus only specific receptor-ligand pairs promote nanotubes. CD2 also promoted nanotube formation in ex vivo NK cells suggesting that CD2 plays a crucial role in the generation of nanotubes between an NK cell and its target.  相似文献   

2.
Tian Y  He Q  Cui Y  Li J 《Biomacromolecules》2006,7(9):2539-2542
Nanotubes of cytochrome C (cyto-c) with glutaraldehyde (GA) or PSS based on the layer-by-layer (LbL) assembly through covalent binding and electrostatic adsorption have been fabricated. The combination of the template method and the LbL method for fabrication of nanotubes exhibits low cost, simplicity, and versatility. The tubular morphology of the assembled glutaraldehyde and cytochrome C film was demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements.The components of the tubes were determined by energy-dispersive X- ray spectra (EDAX). It is found that the assembled tubes keep the proteins' biochemical activity and electronic activity by cyclic voltammograms. The measurements of ultraviolet spectra and circular dichroism (CD) on the assembled nanotubes confirmed the cyto-c existence in the tubes.  相似文献   

3.
Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.  相似文献   

4.
This paper presents a microfluidic chip platform with electrochemical carbon nanotube electrodes for preclinical evaluation of antibiotics nanocapsules. Currently, there has been an increasing interest in the development of nanocapsules for drug delivery applications for localized treatments of diseases. So far, the methods to detect antibiotics are liquid chromatography (LC), high performance liquid chromatography (HPLC), mass spectroscopy (MS). These conventional instruments are bulky, expensive, not ease of access, and talented operator required. In order to help the development of nanocapsules and understand drug release profile before planning the clinical experiments, it is important to set up a biosensing platform which could monitor and evaluate the real-time drug release profile of nanocapsules with high sensitivity and long-term measurement ability. In this work, a microfluidic chip platform with electrochemical carbon nanotube electrodes has been developed and characterized for rapid detection of antibiotics teicoplanin nanocapsules. Multi-walled carbon nanotubes are used to modify the gold electrode surfaces to enhance the performance of the electrochemical biosensors. Experimental results show that the limit of detection of the developed platform using carbon nanotubes electrodes is 0.1 μg/ml with a linear range from 1 μg/ml to 10 μg/ml. The sensitivity of the developed system is 0.023 mA ml/μg at 37°C. The drug release profile of teicoplanin nanocapsules in PBS shows that the antibiotics nanocapsules significantly increased the release of drug on the 4th day, measuring 0.4858 μg/(ml hr). The release of drug from the antibiotics nanocapsules reached 34.98 μg/ml on the 7th day. The results showed a similar trend compared with the measurement result using the HPLC instrument. Compared with the traditional HPLC measurements, the electrochemical sensing platform we developed measures results with increased flexibility in controlling experimental factors for long-term preclinical measurement of nanocapsules in real time and at low cost.  相似文献   

5.
This study shows that electrophoretic deposition (EPD) is a fast and efficient technique for producing protein nanotube-based biointerfaces. Well-shaped collagen-based nanotubes of controlled dimensions are synthesized by a template method combined with the layer-by-layer (LbL) assembly technique. Separation of nanotubes from the template material and collection of nanotubes on ITO glass carried out by EPD leads to a fairly homogeneous distribution of protein nanotubes at the support surface. Biointerfaces with different and tunable densities of protein nanotubes are obtained by changing either the applied voltage, solution concentration of nanotubes, or deposition time. Moreover, it is proved that the collected nanotubes are template-free and keep their biofunctional outermost layer after EPD. A preliminary study of the behavior of preosteoblasts cells with the elaborated biointerfaces indicates a specific interaction of cells with the nanotubes through filopodia. This contribution paves the way to the easy preparation of a large variety of useful nanostructured collagen and other protein-based interfaces for controlling cell-surface interactions in diverse biomaterials applications.  相似文献   

6.
Reviews in Environmental Science and Bio/Technology - Halloysite nanotubes (HNTs) are of importance for the elimination of various kinds of molecules from complex matrix due to their outstanding...  相似文献   

7.
Herein, the impact of the halloysite nanotubes to suppress the side effects of Asparaginase (ANase) cellular proliferation was investigated. Methods: A total of 100 adult male mice was employed. These mice were divided into four equal groups; Group 1 (control), Group 2 (ESC group) of a single dose of 0.15 ml Ehrlich cells (2 × 106) intraperitoneal infusion(IP), Group 3 (ESC + ANase group) received six doses equal treatments of Intratumoral (IT) 0.07 ml Aspragnase (7 mg/kg) over two weeks. For two weeks, Group 4 (ESC + ASNase + HNTs) received an IT administration of 0.07 ml Asparaginase stocked on Halloysite nanotubes (HNTs) (30 mg/kg) three times per week. A blood specimen was collected, and the liver was removed to be investigated histologically. Results: TEM measurements for the Halloysite nanoclay showed their tubular cylindrical shape with a mean diameter of 50 nm and an average length of 1 μm, whereas The X-ray diffraction pattern of the Halloysite nanoclay showed their characteristic peaks. ESC increases the serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and bilirubin than control and other groups, even as albumin and total protein were decreasing. After using Halloysite Nanotube, the rates of these variables were enhanced up to 75%. The hepatocytes histological studies showed protection against Ehrlich Solid carcinoma-induced degenerative, necrotic, and inflammatory changes up to 70%. In conclusion, halloysite nanotubes have demonstrated effective removal of Ehrlich solid carcinoma in mice using an ASNase delivery system. It promoted the ASNase to inhibit the adverse effect of ANase's on the liver and remove the tumour cells.  相似文献   

8.
Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion.  相似文献   

9.
Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes.  相似文献   

10.
In this work, for the first time, the diameter limit of surfactant wrapped single walled carbon nanotubes (SWCNTs) in SWCNT:C60 solar cells is determined through preparation of monochiral small and large diameter nanotube devices as well as those from polychiral mixtures. Through assignment of the different nanotube chiralities by photoluminescence and optical density measurements a diameter limit yielding 0% internal quantum efficiency (IQE) is determined. This work provides insights into the required net driving energy for SWCNT exciton dissociation onto C60 and establishes a family of (n,m) species which can efficiently be utilized in polymer‐free SWCNT:C60 solar cells. Using this approach the largest diameter nanotube with an IQE > 0% is found to be (8,6) with a diameter of 0.95 nm. Possible strategies to extend this diameter limit are then discussed.  相似文献   

11.
Membrane nanotubes are a morphologically versatile group of membrane structures (some resembling filopodia), usually connecting two closely positioned cells. In this article, we set morphological criteria that distinguish the membrane nanotubes from filopodia, as there is no specific molecular marker known to date that unequivocally differentiates between filopodia and protruding nanotubes. Membrane nanotubes have been extensively studied from the morphological point of view and the transport that can be conducted through them, but little is known about the way they connect to the adjacent cell. Our results show that the nanotubes may connect to a neighboring cell by anchoring junctions. Among cell adhesion proteins, N-cadherin, β-catenin, nectin-2, afadin and the desmosomal protein desmoplakin-2 were immune-labeled. We found that N-cadherin and β-catenin are concentrated in nanotubes, while the concentrations of other junction-involved proteins are not increased in these structures. On the basis of data from transmission electron microscopy, we propose a model of the nanotube attachment where the connection of nanotubes is stabilized by several anchoring junctions, most likely adherens junctions that are formed when the nanotube is sliding along the target cell membrane.  相似文献   

12.
A facile strategy to deposit Pt nanoparticles with various metal‐loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L ‐ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot‐press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance.  相似文献   

13.
John L. Coward   《Flora》2007,202(6):462-470
A method for selectively isolating and aggregating intact nanotubes from leaf surfaces, in sample quantities useable for their characterisation in further experimental investigations, is presented here. It uses liquid sucrose, as a saturated solution, with its wetting behaviour modified by the addition of controlled amounts of ethanol, as a temporary entrapment and release medium, for removing nanotube material from the leaf surface, here of Picea pungens (Engelmann). This harvesting technique works by the slow, gentle transition of the medium from liquid to solid, capturing the nanotubes, and then back to liquid again, releasing them, to form an aggregate sample, with little compromise to the structural integrity of individual nanotubes. Scanning electron microscopy (SEM) images are presented rigorously illustrating the technique and its effectiveness. Comparison with other recent methods reveals its advantages, and potential applications are explored.  相似文献   

14.
The preparation of multilayer films based on poly(p-phenylenevinylene) (PPV) and carboxylic-functionalized single-walled carbon nanotubes (SWNT-COOH) by electrostatic interaction using the layer-by-layer (LbL) deposition method is reported herein. The multilayer build-up, monitored by UV-Vis and photoluminescence (PL) spectroscopies, displayed a linear behavior with the number of PPV and SWNT-COOH layers deposited that undergo deviation and spectral changes for thicker films. Film morphology was evaluated by AFM and epifluorescence microscopies showing remarkable changes after incorporation of SWNT-COOH layers. Films without SWNT show roughness and present dispersed grains; films with SWNT-COOH layers are flatter and some carbon nanotube bundles can be visualized. The photoinduced charge transfer from the conducting polymer to SWNT-COOH was analyzed by PL quenching either by the decrease of the emission intensity or by the presence of dark domains in the epifluorescence micrographs. Photoelectrochemical characterization was performed under white light and the films containing SWNT-COOH displayed photocurrent values between 2.0 μA cm(-2) and 7.5 μA cm(-2), as the amount of these materials increases in the film. No photocurrent was observed for the film without carbon nanotubes. Photocurrent generation was enhanced and became more stable when an intermediate layer of PEDOT:PSS was interposed between the active layer and the ITO electrode, indicating an improvement in hole transfer to the contacts. Our results indicate that these multilayer films are promising candidates as active layers for organic photovoltaic cells.  相似文献   

15.
Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress–strain curves of nanocomposites and Young’s, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts.  相似文献   

16.
Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.  相似文献   

17.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

18.
Abstract

Molecular dynamics simulations were carried out to investigate the origin of friction for carbon nanotubes on graphite substrates. In an initial simulation, a (10,10) nanotube was placed in an ‘in-registry’ starting position where the hexagonal lattice of the substrate matched that of the nanotube. In a second simulation, the substrate was oriented 90 degrees to the nanotube. A uniform force was applied to the nanotubes for 500 fs to set them into motion. The simulation was then run until the nanotubes stopped moving relative to the substrate. Only sliding was observed in the out-of-registry simulation, while periodic sliding and rolling was observed in the in-registry simulation. The latter is a result of the relatively larger surface corrugation for the in-registry case and occurs to avoid direct atomic collisions between nanotube and substrate atoms as the nanotube is moved along the substrate. Analysis of the kinetic energy suggests that the transition between sliding and rolling contributes to enhanced energy dissipation and higher net friction. These results are consistent with preliminary experimental observations by Superfine and coworkers.  相似文献   

19.
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.  相似文献   

20.
A new approach to engineer a local drug delivery system with delayed release using nanostructured surface with nanotube arrays is presented. TNT arrays electrochemically generated on a titanium surface are used as a model substrate. Polymer micelles as drug carriers encapsulated with drug are loaded at the bottom of the TNT structure and their delayed release is obtained by loading blank micelles (without drug) on the top. The delayed and time-controlled drug release is successfully demonstrated by controlling the ratio of blank and drug loaded-micelles. The concept is verified using four different polymer micelles (regular and inverted) loaded with water-insoluble (indomethacin) and water-soluble drugs (gentamicin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号