首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.  相似文献   

2.
C F Zheng  K L Guan 《The EMBO journal》1994,13(5):1123-1131
MEK is a family of dual specific protein kinases which activate the extracellular signal-regulated kinases by phosphorylation of threonine and tyrosine residues. MEK itself is activated via serine phosphorylation by upstream activator kinases, including c-raf, mos and MEK kinase. Here, we report the activation phosphorylation sites of human MEK1 and yeast STE7 kinase as determined by a combination of biochemical and genetic approaches. In human MEK1, substitution of either serine residue 218 or 222 with alanine completely abolished its activation by epidermal growth factor-stimulated Swiss 3T3 cell lysates or immunoprecipitated c-raf, suggesting that both serine residues are required for MEK1 activation. Phosphopeptide analysis demonstrated that serine residues 218 and 222 of human MEK1 are the primary sites for phosphorylation by c-raf. These two serine residues are highly conserved in all members of the MEK family, including the yeast STE7 gene product, a MEK homolog in the yeast mating pheromone response pathway. Mutation of the corresponding residues in STE7 completely abolished the biological functions of this gene. These data demonstrate that MEK is activated by phosphorylation of two adjacent serine/threonine residues and this activation mechanism is conserved in the MEK family kinases.  相似文献   

3.
A mechanism for the evolution of phosphorylation sites   总被引:1,自引:0,他引:1  
Pearlman SM  Serber Z  Ferrell JE 《Cell》2011,147(4):934-946
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.  相似文献   

4.
Fine tuning of the spectral properties of LH2 by single amino acid residues   总被引:1,自引:0,他引:1  
The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.  相似文献   

5.
The surface properties of a protein are often crucial for recognition and interaction with other molecules. Important functional residues can be identified by mutational analysis. There is a need for rapid methods to study protein surfaces and surface changes due to mutations. Partitioning in aqueous two-phase systems has the potential to be used in this respect since protein partitioning depends on the surface properties of the protein. The influence of surface-exposed amino acid residues in protein partitioning has been studied with cutinase variants, which differed in one or several amino acid residues as a result of site-directed mutagenesis. The solvent accessibility of the mutated residues was determined with a computer program, Graphical Representation and Analysis of Surface Properties. The aqueous two-phase system was composed of dextran and a random copolymer of ethylene oxide and propylene oxide. It was shown, for the first time, to what extent surface-exposed amino acid residues influence the partition coefficient in an aqueous two-phase system. The effect on partitioning could be described only taking into account solvent accessibility and type of residue substitution. The results demonstrate that the system can be used to detect conformational changes in mutant proteins since the expected effect on partitioning due to a mutation can be calculated. The aqueous two-phase system used here does indeed provide a rapid and convenient method to study protein surfaces and slight surface changes due to mutations.  相似文献   

6.
7.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

8.
Lee TC  Lee AS  Li KB 《Amino acids》2008,35(3):615-626
Determining if missense mutations are deleterious is critical for the analysis of genes implicated in disease. However, the mutational effects of many missense mutations in databases like the Breast Cancer Information Core are unclassified. Several approaches have emerged recently to determine such mutational effects but none have utilized amino acid property indices. We modified a previously described phylogenetic approach by first classifying benign substitutions based on the assumption that missense mutations that are maintained in orthologs are unlikely to affect function. A consensus conservation score based on 16 amino acid properties was used to characterize the remaining substitutions. This approach was evaluated with experimentally verified T4 lysozyme missnese mutations and is shown to be able to sieve out putative biochemical and structurally important residues. The use of amino acid properties can enhance the prediction of biochemical and structurally important residues and thus also predict the significance of missense mutations.  相似文献   

9.
10.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

11.
Gene duplication is thought to be a major source of evolutionary innovation because it allows one copy of a gene to mutate and explore genetic space while the other copy continues to fulfill the original function. Models of the process often implicitly assume that a single mutation to the duplicated gene can confer a new selectable property. Yet some protein features, such as disulfide bonds or ligand binding sites, require the participation of two or more amino acid residues, which could require several mutations. Here we model the evolution of such protein features by what we consider to be the conceptually simplest route-point mutation in duplicated genes. We show that for very large population sizes N, where at steady state in the absence of selection the population would be expected to contain one or more duplicated alleles coding for the feature, the time to fixation in the population hovers near the inverse of the point mutation rate, and varies sluggishly with the lambda(th) root of 1/N, where lambda is the number of nucleotide positions that must be mutated to produce the feature. At smaller population sizes, the time to fixation varies linearly with 1/N and exceeds the inverse of the point mutation rate. We conclude that, in general, to be fixed in 10(8) generations, the production of novel protein features that require the participation of two or more amino acid residues simply by multiple point mutations in duplicated genes would entail population sizes of no less than 10(9).  相似文献   

12.
nsP3 is one of the four RNA replicase subunits encoded by alphaviruses. The specific essential functions of nsP3 remain unknown, but it is known to be phosphorylated on serine and threonine residues. Here we have completed mapping of the individual phosphorylation sites on Semliki Forest virus nsP3 (482 amino acids) by point mutational analysis of threonine residues. This showed that threonines 344 and 345 represented the major threonine phosphorylation sites in nsP3. Experiments with deletion variants suggested that nsP3 itself had no kinase activity; instead, it was likely to be phosphorylated by multiple cellular kinases. Phosphorylation was not necessary for the peripheral membrane association of nsP3, which was mediated by the N-terminal region preceding the phosphorylation sites. Two deletion variants of nsP3 with either reduced or undetectable phosphorylation were studied in the context of virus infection. Cells infected with mutant viruses produced close to wild type levels of infectious virions; however, the rate of viral RNA synthesis was significantly reduced in the mutants. A virus totally defective in nsP3 phosphorylation and exhibiting a decreased rate of RNA synthesis also exhibited greatly reduced pathogenicity in mice.  相似文献   

13.
14.
The presence in proteins of amino acid residues that change in concert during evolution is associated with keeping constant the protein spatial structure and functions. As in the case with morphological features, correlated substitutions may become the cause of homoplasies--the independent evolution of identical non-homological adaptations. Our data obtained on model phylogenetic trees and corresponding sets of sequences have shown that the presence of correlated substitutions distorts the results of phylogenetic reconstructions. A method for accounting for co-evolving amino acid residues in phylogenetic analysis is proposed. According to this method, only a single site from the group of correlated amino acid positions should remain, whereas other positions should not be used in further phylogenetic analysis. Simulations performed have shown that replacement on the average of 8% of variable positions in a pair of model sequences by coordinately evolving amino acid residues is able to change the tree topology. The removal of such amino acid residues from sequences before phylogenetic analysis restores the correct topology.  相似文献   

15.
rap1GAP is a GTPase-activating protein that specifically stimulates the GTP hydrolytic rate of p21rap1. We have defined the catalytic domain of rap1GAP by constructing a series of cDNAs coding for mutant proteins progressively deleted at the amino- and carboxy-terminal ends. Analysis of the purified mutant proteins shows that of 663 amino acid residues, only amino acids 75 to 416 are necessary for full GAP activity. Further truncation at the amino terminus resulted in complete loss of catalytic activity, whereas removal of additional carboxy-terminal residues dramatically accelerated the degradation of the protein in vivo. The catalytic domain we have defined excludes the region of rap1GAP which undergoes phosphorylation on serine residues. We have further defined this phosphoacceptor region of rap1GAP by introducing point mutations at specific serine residues and comparing the phosphopeptide maps of the mutant proteins. Two of the sites of phosphorylation by cyclic AMP (cAMP)-dependent kinase were localized to serine residues 490 and 499, and one site of phosphorylation by p34cdc2 was localized to serine 484. In vivo, rap1GAP undergoes phosphorylation at four distinct sites, two of which appear to be identical to the sites phosphorylated by cAMP-dependent kinase in vitro.  相似文献   

16.
Detailed analyses of protein structures provide an opportunity to understand conformation and function in terms of amino acid sequence and composition. In this work, we have systematically analyzed the characteristic features of the amino acid residues found in alpha-helical coiled-coils and, in so doing, have developed indices for their properties, conformational parameters, surrounding hydrophobicity and flexibility. As expected, there is preference for hydrophobic (Ala, Leu), positive (Lys, Arg) and negatively (Glu) charged residues in coiled-coil domains. However, the surrounding hydrophobicity of residues in coiled-coil domains is significantly less than that for residues in other regions of coiled-coil proteins. The analysis of temperature factors in coiled-coil proteins shows that the residues in these domains are more stable than those in other regions. Further, we have delineated the medium- and long-range contacts in coiled-coil domains and compared the results with those obtained for other (non-coiled-coil) parts of the same proteins and non-coiled-coil helical segments of globular proteins. The residues in coiled-coil domains are largely influenced by medium-range contacts, whereas long-range interactions play a dominant role in other regions of these same proteins as well as in non-coiled-coil helices. We have also revealed the preference of amino acid residues to form cation-pi interactions and we found that Arg is more likely to form such interactions than Lys. The parameters developed in this work can be used to understand the folding and stability of coiled-coil proteins in general.  相似文献   

17.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

18.
White- and Yolk-riboflavin binding proteins were isolated from hen eggs, and characterized as to their chemical properties. White- and Yolk-RBPs had almost same amino acid compositions except for glutamic acid, but their carbohydrate compositions were different from each other. The complete amino acid sequence of White-RBP was determined by conventional methods. White-RBP comprised 219 amino acid residues, and the amino-terminus was pyroglutamic acid (pyrrolidonecarboxylic acid). Two amino acids, lysine and asparagine, were found at the fourteenth residue from the amino-terminus. Carbohydrate chains were linked to asparagine residues at positions 36 and 147. Both White- and Yolk-RBPs were phosphorylated. In White-RBP either six or seven of nine serine residues between Ser(185) and Ser(197) were phosphorylated. The amino acid sequences around phosphoserines showed that phosphorylation might occur at a serine residue in one of the following sequences; Ser-X-Glu or Ser-X-Ser(P).  相似文献   

19.
In canonical translation systems, the single elongation factor Tu (EF-Tu) recognizes all elongator tRNAs. However, in Caenorhabditis elegans mitochondria, two distinct EF-Tu species, EF-Tu1 and EF-Tu2, recognize 20 species of T armless tRNA and two species of D armless tRNA(Ser), respectively. We previously reported that C. elegans mitochondrial EF-Tu2 specifically recognizes the serine moiety of serylated-tRNA. In this study, to identify the critical residues for the serine specificity in EF-Tu2, several residues in the amino acid binding pocket of bacterial EF-Tu were systematically replaced with corresponding EF-Tu2 residues, and the mutants were analyzed for their specificity for esterified amino acids attached to tRNAs. In this way, we obtained a bacterial EF-Tu mutant that acquired serine specificity after the introduction of 10 EF-Tu2 residues into its amino acid binding pocket. C. elegans EF-Tu2 mutants lacking serine specificity were also created by replacing seven or eight residues with bacterial residues. Further stressing the importance of these residues, we found that they are almost conserved in EF-Tu2 sequences of closely related nematodes. Thus, these three approaches reveal the critical residues essential for the unique serine specificity of C. elegans mitochondrial EF-Tu2.  相似文献   

20.
PDGF binding to its receptor promotes the association with and stimulates the phosphorylation of PLC-gamma 1 at tyrosine and serine residues. Also, PDGF induces an increase in the hydrolysis of inositol phospholipids by PLC. How PDGF activates PLC was investigated by substituting phenylalanine for tyrosine at PLC-gamma 1 phosphorylation sites 771, 783, and 1254 and expressing the mutant enzymes in NIH 3T3 cells. Phenylalanine substitution at Tyr-783 completely blocked the activation of PLC by PDGF, whereas mutation at Try-1254 inhibited and mutation at Tyr-771 enhanced the response. Like the wild type, PLC-gamma 1 substituted with phenylalanine at Tyr-783 became associated with the PDGF receptor and underwent phosphorylation at serine residues in response to PDGF. These results suggest that PLC-gamma 1 is the PLC isozyme that mediates PDGF-induced inositol phospholipid hydrolysis, that phosphorylation on Tyr-783 is essential for PLC-gamma 1 activation. These results provide direct evidence that growth factor receptors activate the function of intracellular protein by tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号