首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

2.
3.
Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (beta-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.  相似文献   

4.
5.
To maximize reproductive success, flowering plants must correctly time entry and exit from the reproductive phase. While much is known about mechanisms that regulate initiation of flowering, end-of-flowering remains largely uncharacterized. End-of-flowering in Arabidopsis (Arabidopsis thaliana) consists of quasi-synchronous arrest of inflorescences, but it is unclear how arrest is correctly timed with respect to environmental stimuli and reproductive success. Here, we showed that Arabidopsis inflorescence arrest is a complex developmental phenomenon, which includes the arrest of the inflorescence meristem (IM), coupled with a separable “floral arrest” of all unopened floral primordia; these events occur well before visible inflorescence arrest. We showed that global inflorescence removal delays both IM and floral arrest, but that local fruit removal only delays floral arrest, emphasizing their separability. We tested whether cytokinin regulates inflorescence arrest, and found that cytokinin signaling dynamics mirror IM activity, while cytokinin treatment can delay both IM and floral arrest. We further showed that gain-of-function cytokinin receptor mutants can delay IM and floral arrest; conversely, loss-of-function mutants prevented the extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest.

The phytohormone cytokinin regulates multiple distinct developmental events at the end of flowering in Arabidopsis thaliana.  相似文献   

6.
7.
8.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

9.
Guan CM  Zhu SS  Li XG  Zhang XS 《Plant cell reports》2006,25(11):1133-1137
To study hormone-regulated inflorescence development, we established the in vitro regeneration system of Arabidopsis inflorescences in the presence of cytokinin and auxin. Media containing a combination of thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used to induce callus formation. Higher frequencies of calli were obtained by using the inflorescence stems as explants. After transferring the calli to media containing a combination of zeatin and indole-3-acetic acid (IAA), the inflorescences were induced from the calli. The morphology of regenerated inflorescences was similar to that of inflorescences in plants; however, flowers of regenerated inflorescences often lacked a few floral organs. Furthermore, TFL1, a gene involved in floral transition in Arabidopsis, was activated during the inflorescence induction. Our results suggest that the TFL1 gene plays an important role in hormone-regulated inflorescence formation.  相似文献   

10.
The apple (Malus?×?domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4?years) and a long reproductive period between the flower initiation and the mature fruit (14?C16?months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.  相似文献   

11.
The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.  相似文献   

12.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

13.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

14.
15.
Crane O  Halaly T  Pang X  Lavee S  Perl A  Vankova R  Or E 《Planta》2012,235(1):181-192
Grapevine bud fruitfulness is determined by the differentiation of uncommitted meristem (UCM) into either tendril or inflorescence. Since tendril and inflorescence differentiation have long been considered sequential steps in inflorescence development, factors that control the progression of floral meristem development may regulate the final outcome of UCM differentiation, and thus affect fruitfulness. A comparison of the expression profiles of the master regulators of floral meristem identity (FMI) during development of fruitful and non-fruitful buds along the same cane allowed associating the expression of a homolog of terminal flower 1 (TFL1, a negative regulator of FMI) to fruitful buds, and the expression of positive FMI regulators to non-fruitful buds. Combined with (a) cytokinin-induced upregulation of VvTFL1A expression in cultured tendrils, which accompanied cytokinin-derived tendril transformation into branched, inflorescence-like structures, (b) positive regulation of VvTFL1A expression by cytokinin, which was demonstrated in transgenic embryonic culture expressing GUS reporter under the control of VvTFL1A promoter, and (c) a significantly higher level of active cytokinins in fruitful positions, the data may support the assumption of cytokinin-regulated VvTFL1A activity’s involvement in the control of inflorescence development. Such activity may delay acquisition of FMI and allow an extended branching period for the UCM, resulting in the differentiation of inflorescence primordia.  相似文献   

16.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

17.
18.
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis   总被引:3,自引:0,他引:3  
The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号