首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent publications have revealed that the evolution of phosphosites is influenced by the local protein structures and whether the phosphosites have characterized functions or not. With knowledge of the wide functional range of phosphorylation, we attempted to clarify whether the evolutionary conservation of phosphosites is different among distinct functional modules. We grouped the phosphosites in the human genome into the modules according to the functional categories of KEGG (Kyoto Encyclopedia of Genes and Genomes) and investigated their evolutionary conservation in vertebrate genomes from mouse to zebrafish. We have found that the phosphosites in the vertebrate-specific functional modules (VFMs), such as cellular signaling processes and responses to stimuli, are evolutionarily more conserved than those in the basic functional modules (BFMs), such as metabolic and genetic processes. The phosphosites in the VFMs are also significantly more conserved than their flanking regions, whereas those in the BFMs are not. These results hold for both serine/threonine and tyrosine residues, although the fraction of phosphorylated tyrosine residues is increased in the VFMs. Moreover, the difference in the evolutionary conservation of the phosphosites between the VFMs and BFMs could not be explained by the difference in the local protein structures. There is also a higher fraction of phosphosites with known functions in the VFMs than BFMs. Based on these findings, we have concluded that protein phosphorylation may play more dominant roles for the VFMs than BFMs during the vertebrate evolution. As phosphorylation is a quite rapid biological reaction, the VFMs that quickly respond to outer stimuli and inner signals might heavily depend on this regulatory mechanism. Our results imply that phosphorylation may have an essential role in the evolution of vertebrates.  相似文献   

2.
Protein phosphorylation is a key mechanism to regulate protein functions. However, the contribution of this protein modification to species divergence is still largely unknown. Here, we studied the evolution of mammalian phosphoregulation by comparing the human and mouse phosphoproteomes. We found that 84% of the positions that are phosphorylated in one species or the other are conserved at the residue level. Twenty percent of these conserved sites are phosphorylated in both species. This proportion is 2.5 times more than expected by chance alone, suggesting that purifying selection is preserving phosphoregulation. However, we show that the majority of the sites that are conserved at the residue level are differentially phosphorylated between species. These sites likely result from false-negative identifications due to incomplete experimental coverage, false-positive identifications and non-functional sites. In addition, our results suggest that at least 5% of them are likely to be true differentially phosphorylated sites and may thus contribute to the divergence in phosphorylation networks between mouse and humans and this, despite residue conservation between orthologous proteins. We also showed that evolutionary turnover of phosphosites at adjacent positions (in a distance range of up to 40 amino acids) in human or mouse leads to an over estimation of the divergence in phosphoregulation between these two species. These sites tend to be phosphorylated by the same kinases, supporting the hypothesis that they are functionally redundant. Our results support the hypothesis that the evolutionary turnover of phosphorylation sites contributes to the divergence in phosphorylation profiles while preserving phosphoregulation. Overall, our study provides advanced analyses of mammalian phosphoproteomes and a framework for the study of their contribution to phenotypic evolution.  相似文献   

3.
Profiling using high‐throughput MS has discovered an overwhelming number of novel protein phosphorylation sites (“phosphosites”). However, the functional relevance of these sites is not always clear. In light of recent studies on the evolutionary mechanism of phosphorylation, we have developed CPhos, a Java program that can assess the conservation of phosphosites among species using an information theory‐based approach. The degree of conservation established using CPhos can be used to assess the functional significance of phosphosites. CPhos has a user friendly graphical user interface and is available both as a web service and as a standalone Java application to assist phosphoproteomic researchers in analyzing and prioritizing lists of phosphosites for further experimental validation. CPhos can be accessed or downloaded at http://helixweb.nih.gov/CPhos/ .  相似文献   

4.
Protein phosphorylation dynamically regulates cellular activities in response to environmental cues. Sequence conservation analysis of recent proteome-wide phosphorylation data revealed that many previously unidentified phosphorylation sites are not well-conserved leading to the proposal that many are non-functional. However, this is based on the assumption that protein phosphorylation modulates protein function through specific position on protein sequence. Based on emerging understanding on phospho-regulation of cellular activities, we argue, with examples, that non-positionally conserved phosphorylation sites can very well be functional. We previously identified phosphorylation events that need not be conserved at same positions across orthologous proteins but are likely maintained by evolutionary conserved signaling networks through orthologous kinases. We found that proteins with such conserved phosphorylation patterns are statistically over-represented with protein and DNA-binding annotation. Here, we further correlated these proteins with protein-protein interaction data from an independent systematic study and observed they indeed interact frequently with other proteins. Hence, we speculate that non-positionally conserved phosphorylation site could be modulating biomolecular association of phosphorylated proteins possibly through fine-tuning protein’s bulk electrostatic charge and through creating binding sites for phospho-binding interaction domains. We, therefore, advocate the development of complementary evolutionary approaches to interpret physiological important sites.  相似文献   

5.
6.
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.  相似文献   

7.

Background

Coordinated through a complex network of kinases and phosphatases, protein phosphorylation regulates essentially all cellular processes in eukaryotes. Recent advances in proteomics enable detection of thousands of phosphorylation sites (phosphosites) in single experiments. However, functionality of the vast majority of these sites remains unclear and we lack suitable approaches to evaluate functional relevance at a pace that matches their detection.

Results

Here, we assess functionality of 26 phosphosites by introducing phosphodeletion and phosphomimic mutations in 25 metabolic enzymes and regulators from the TOR and HOG signaling pathway in Saccharomyces cerevisiae by phenotypic analysis and untargeted metabolomics. We show that metabolomics largely outperforms growth analysis and recovers 10 out of the 13 previously characterized phosphosites and suggests functionality for several novel sites, including S79 on the TOR regulatory protein Tip41. We analyze metabolic profiles to identify consequences underlying regulatory phosphorylation events and detecting glycerol metabolism to have a so far unknown influence on arginine metabolism via phosphoregulation of the glycerol dehydrogenases. Further, we also find S508 in the MAPKK Pbs2 as a potential link for cross-talking between HOG signaling and the cell wall integrity pathway.

Conclusions

We demonstrate that metabolic profiles can be exploited for gaining insight into regulatory consequences and biological roles of phosphosites. Altogether, untargeted metabolomics is a fast, sensitive and informative approach appropriate for future large-scale functional analyses of phosphosites.
  相似文献   

8.
A mechanism for the evolution of phosphorylation sites   总被引:1,自引:0,他引:1  
Pearlman SM  Serber Z  Ferrell JE 《Cell》2011,147(4):934-946
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.  相似文献   

9.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes. We have recently reported the first in-depth phosphorylation site-resolved dataset from the model Gram-positive bacterium, Bacillus subtilis, showing that Ser/Thr/Tyr phosphorylation is also present on many essential bacterial proteins. To test whether this modification is common in Eubacteria, here we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site-resolved database of bacterial phosphoproteins to date (available at www.phosida.com) and used it to study evolutionary conservation of bacterial phosphoproteins and phosphorylation sites across the phylogenetic tree. We demonstrate that bacterial phosphoproteins and phosphorylated residues are significantly more conserved than their nonphosphorylated counterparts, with a number of potential phosphorylation sites conserved from Archaea to humans. Our results establish Ser/Thr/Tyr phosphorylation as a common posttranslational modification in Eubacteria, present since the onset of cellular life.  相似文献   

10.
Amphiphysin I (amphI) is dephosphorylated by calcineurin during nerve terminal depolarization and synaptic vesicle endocytosis (SVE). Some amphI phosphorylation sites (phosphosites) have been identified with in vitro studies or phosphoproteomics screens. We used a multifaceted strategy including 32P tracking to identify all in vivo amphI phosphosites and determine their relative abundance and potential relevance to SVE. AmphI was extracted from 32P-labeled synaptosomes, phosphopeptides were isolated from proteolytic digests using TiO2 chromatography, and mass spectrometry revealed 13 sites: serines 250, 252, 262, 268, 272, 276, 285, 293, 496, 514, 539, and 626 and Thr-310. These were distributed into two clusters around the proline-rich domain and the C-terminal Src homology 3 domain. Hierarchical phosphorylation of Ser-262 preceded phosphorylation of Ser-268, -272, -276, and -285. Off-line HPLC separation and two-dimensional tryptic mapping of 32P-labeled amphI revealed that Thr-310, Ser-293, Ser-285, Ser-272, Ser-276, and Ser-268 contained the highest 32P incorporation and were the most stimulus-sensitive. Individually Thr-310 and Ser-293 were the most abundant phosphosites, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non-proline-directed kinases, Ser-626, -250, -252, and -539, contained low amounts of 32P and were not depolarization-responsive. At least one alternatively spliced amphI isoform was identified in synaptosomes as being constitutively phosphorylated because it did not incorporate 32P during the 1-h labeling period. Multiple phosphosites from amphI-co-migrating synaptosomal proteins were also identified, including SGIP (Src homology 3 domain growth factor receptor-bound 2 (Grb2)-like (endophilin)-interacting protein 1), AAK1, eps15R, MAP6, alpha/beta-adducin, and HCN1. The results reveal two sets of amphI phosphosites that are either dynamically turning over or constitutively phosphorylated in nerve terminals and improve understanding of the role of individual amphI sites or phosphosite clusters in synaptic SVE.  相似文献   

11.
12.
Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.  相似文献   

13.
14.
Posttranslational modifications offer a dynamic way to regulate protein activity, subcellular localization, and stability. Here we estimate the effect of phosphorylation on protein binding and function for different types of complexes from human proteome. We find that phosphorylation sites tend to be located on binding interfaces in heterooligomeric and weak transient homooligomeric complexes. Analysis of molecular mechanisms of phosphorylation shows that phosphorylation may modulate the strength of interactions directly on interfaces and that binding hotspots tend to be phosphorylated in heterooligomers. Although the majority of complexes do not show significant estimated stability differences upon phosphorylation or dephosphorylation, for about one-third of all complexes it causes relatively large changes in binding energy. We discuss the cases where phosphorylation mediates the complex formation and regulates the function. We show that phosphorylation sites are more likely to be evolutionary conserved than other interfacial residues.  相似文献   

15.
Protein phosphorylation plays a critical role in the regulation and progression of mitosis. >40,000 phosphorylated residues and the associated kinases have been identified to date via proteomic analyses. Although some of these phosphosites are associated with regulation of either protein-protein interactions or the catalytic activity of the substrate protein, the roles of most mitotic phosphosites remain unclear. In this study, we examined structural properties of mitotic phosphosites and neighboring residues to understand the role of heavy phosphorylation in non-structured domains. Quantitative mass spectrometry analysis of mitosis-arrested and non-arrested HeLa cells revealed >4100 and > 2200 residues either significantly phosphorylated or dephosphorylated, respectively, at mitotic entry. The calculated disorder scores of amino acid sequences of neighboring individual phosphosites revealed that >70% of dephosphorylated phosphosites exist in disordered regions, whereas 50% of phosphorylated sites exist in non-structured domains. A clear inverse correlation was observed between probability of phosphorylation in non-structured domain and increment of phosphorylation in mitosis. These results indicate that at entry to mitosis, a significant number of phosphate groups are removed from non-structured domains and transferred to more-structured domains. Gene ontology term analysis revealed that mitosis-related proteins are heavily phosphorylated, whereas RNA-related proteins are both dephosphorylated and phosphorylated, suggesting that heavy phosphorylation/dephosphorylation in non-structured domains of RNA-binding proteins plays a role in dynamic rearrangement of RNA-containing organelles, as well as other intracellular environments.  相似文献   

16.
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.  相似文献   

17.
Sui S  Wang J  Yang B  Song L  Zhang J  Chen M  Liu J  Lu Z  Cai Y  Chen S  Bi W  Zhu Y  He F  Qian X 《Proteomics》2008,8(10):2024-2034
The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ.  相似文献   

18.
The alpha-subunit of the Na,K-ATPase is phosphorylated at specific sites by protein kinases A and C. Phosphorylation by protein kinase C (PKC) is restricted to the N terminus and takes place to a low stoichiometry, except in rat. Here we show that the alpha-subunit of shark Na,K-ATPase can be phosphorylated by PKC at C-terminal sites to stoichiometric levels in the presence of detergents. Two novel phosphorylation sites are possible candidates for this PKC phosphorylation: Thr-938 in the M8/M9 loop located very close to the PKA site, and Ser-774, in the proximal part of the M5/M6 hairpin. Both sites are highly conserved in all known alpha-subunits, indicating a physiological role. A similar pattern of detergent-mediated phosphorylation by PKC was found in pig kidney Na,K-ATPase alpha-subunit. Interestingly, the kidney-specific gamma-subunit was phosphorylated by PKC in the presence of detergent. The close proximity of the novel PKC sites to the membrane suggests that targeting proteins to tether PKC into the membrane phase is important in controlling the in vivo phosphorylation of this novel class of membrane-adjacent PKC sites. It is suggested that in purified preparations where functional targeting may be impaired detergents are needed to expose the sites.  相似文献   

19.
Phosphorylation is one of the most dynamic and widespread post‐translational modifications regulating virtually every aspect of eukaryotic cell biology. Here, we assemble a dataset from 75 independent phosphoproteomic experiments performed in our laboratory using Saccharomyces cerevisiae. We report 30,902 phosphosites identified from cells cultured in a range of DNA damage conditions and/or arrested in distinct cell cycle stages. To generate a comprehensive resource for the budding yeast community, we aggregate our dataset with the Saccharomyces Genome Database and another recently published study, resulting in over 46,000 budding yeast phosphosites. With the goal of enhancing the identification of functional phosphorylation events, we perform computational positioning of phosphorylation sites on available 3D protein structures and systematically identify events predicted to regulate protein complex architecture. Results reveal hundreds of phosphorylation sites mapping to or near protein interaction interfaces, many of which result in steric or electrostatic “clashes” predicted to disrupt the interaction. With the advancement of Cryo‐EM and the increasing number of available structures, our approach should help drive the functional and spatial exploration of the phosphoproteome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号