首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.  相似文献   

2.
HFE and transferrin receptor 2 (TFR2) are membrane proteins integral to mammalian iron homeostasis and associated with human hereditary hemochromatosis. Here we demonstrate that HFE and TFR2 interact in cells, that this interaction is not abrogated by disease-associated mutations of HFE and TFR2, and that TFR2 competes with TFR1 for binding to HFE. We propose a new model for the mechanism of iron status sensing that results in the regulation of iron homeostasis.  相似文献   

3.
HFE C282Y homozygotes aged 25-29 years at HEIRS Study initial screening   总被引:1,自引:0,他引:1  
We characterized HFE C282Y homozygotes aged 25-29 years in the HEmochromatosis and IRon Overload Screening (HEIRS) Study using health questionnaire responses, transferrin saturation (TfSat), serum ferritin (SF), and HFE genotyping. In eight homozygotes, we used denaturing high-performance liquid chromatography and sequencing to search for HFE2 (= HJV), TFR2, HAMP, SLC40A1 (= FPN1), and FTL mutations. Sixteen of 4,008 White or Hispanic participants aged 25-29 years had C282Y homozygosity (15 White, 1 Hispanic); 15 were previously undiagnosed. Eleven had elevated TfSat; nine had elevated SF. None reported iron overload-associated abnormalities. No deleterious non-HFE mutations were detected. The prevalence of C282Y homozygosity in White or Hispanic HEIRS Study participants aged 25-29 years did not differ significantly from the prevalence of C282Y homozygosity in older White or Hispanic HEIRS Study participants. The prevalences of reports of iron overload-associated abnormalities were not significantly different in these 16 C282Y homozygotes and in HFE wt/wt control participants aged 25-29 years who did not report having hemochromatosis or iron overload. We conclude that C282Y homozygotes aged 25-29 years diagnosed by screening infrequently report having iron overload-associated abnormalities, although some have elevated SF. Screening using an elevated TfSat criterion would fail to detect some C282Y homozygotes aged 25-29 years.  相似文献   

4.
Since the discovery of the hemochromatosis gene (HFE) in 1996, there has been increasing interest in diagnostic testing for the C282Y and H63D mutations. The high frequency of these two alleles and their incomplete penetrance in homozygotes and compound heterozygotes make genetic counseling for hemochromatosis different from some other autosomal recessive conditions in that parents and children may also be at risk for iron overload, while homozygotes may remain asymptomatic. We provide a guideline for genetic counseling in HFE-linked hemochromatosis based on the genetic probability of inheriting HFE mutations and known information about expression of iron overload in various HFE genotypes. Genetic probabilities were based on allele frequencies derived from large population studies and Hardy-Weinberg equilibrium estimates. Expression of iron overload in those of various genotypes was based on available estimates of serum ferritin from population screening studies. Estimates for the likelihood of clinical iron overload requiring follow-up screening or treatment are provided by gender and genotype. The probability of inheriting HFE mutations and developing iron overload can be estimated in family members of a proband with HFE mutations. Many C282Y homozygotes will not have clinical iron overload. The risk is highest in men and their C282Y homozygous brothers and significantly lower in homozygous women. Iron overload is uncommon in compound heterozygotes and H63D homozygotes.  相似文献   

5.
Hereditary hemochromatosis (HH) is the most common genetic disease among individuals of European descent. Two mutations (845G-->A, C282Y and 187C-->G, H63D) in the hemochromatosis gene (HFE gene) are associated with HH. About 85-90% of patients of northern European descent with HH are C282Y homozygous. The prevalence of HH in the Brazilian population, which has a very high level of racial admixture, is unknown. The aims of the present study were to identify individuals with diagnostic criteria for HH among patients with a body iron overload attended at the university hospital of the Faculty of Medicine of Ribeirao Preto from 1990 to 2000, and to evaluate the prevalence of HFE mutations. We screened first-degree relatives for HFE mutations. Four of 72 patients (three men and one woman, mean age 47 years) fulfilled the criteria for HH. HFE mutations were studied in three patients [two C282Y homozygotes (patients 1 and 2) and one H63D heterozygote]. Patient 1 had four children (all C282Y heterozygotes with no iron overload) and seven brothers and sisters: two sisters (66 and 76 years old) were C282Y homozygotes and both had an iron overload (a liver biopsy in one showed severe iron deposits), one sister (79 years old) was a compound heterozygote with no iron overload, one brother (78 years old) was a C282Y heterozygote with no iron overload, two individuals were H63D heterozygotes (one brother, 49 years old, obese, with a body iron overload and abnormal liver enzymes - a biopsy showed non-alcoholic steatohepatitis, and one 70-year-old sister with no iron overload). Patient 2 had two children (22 and 24 years old who were C282Y heterozygotes with no iron overload) but no brothers or sisters. These results showed that HH was uncommon among individuals attended at our hospital, although HFE mutations were found in all patients. Familial screening is valuable for the early diagnosis of individuals at risk since it allows treatment to be initiated before the onset of the clinical manifestations of organ damage associated with HH.  相似文献   

6.
7.
Hereditary hemochromatosis (HHC) represents an autosomal recessive disease in which increased iron absorption causes iron overload and irreversible tissue damage. The recently detected association between two point mutations in the HFE gene on chromosome 6p and HHC has made it possible to screen for the disease before the onset of irreversible tissue damage. Conventional genetic testing is based on restriction fragment-length polymorphisms (RFLP) using two endonuclease recognition sites in codon 63 or 282, respectively. In this study, we have adapted single-strand conformation polymorphism analysis for capillary electrophoresis (SSCP-CE) to detect homozygote or heterozygote point mutations. Two HFE gene fragments spanning codons 63 and 282 were amplified by a duplex PCR using genomic DNA from peripheral blood or from tissue sections of paraffin-embedded liver biopsies as template. Thereby, rapid genotyping of both HFE mutations was achieved with a single PCR, omitting the need of further analysis by restriction digest. Eighty-five patients with liver disease and/or suspected iron overload were genotyped using SSCP-CE, and all results were verified by conventional RFLP analysis. In summary, SSCP-CE proved to be a reliable, cost-effective, sensitive and rapid method for genotyping HFE mutations. This method will further facilitate high-throughput genetic screening using capillary array electrophoretic devices.  相似文献   

8.
We quantified HFE genotype frequencies in specimens submitted by physicians grouped by specialty and determined associations of genotypes with initial diagnosis based on phenotyping in patients evaluated at an iron disorders center. Of 526 specimens (519 from Alabama), these "typical" hemochromatosis-associated genotypes were detected: 85 C282Y/C282Y, 50 C282Y/H63D, and 27 H63D/H63D. Respective frequencies of C282Y/C282Y in specimens from an iron disorders center (n = 156), gastroenterologists (n = 147), hematologists/medical oncologists (n = 85), liver transplant surgeons (n = 11), endocrinologists and rheumatologists (n = 9), and "other sources" (n = 7) were greater (p < 0.05) than in population controls. In 44 patients from an iron disorders center initially diagnosed as "presumed hemochromatosis," 27 (61.4%) had C282Y/C282Y, 10 (22.7%) had C282Y/H63D, and 3 (6.8%) had H63D/H63D. C282Y/C282Y was not detected in 48 patients with "abnormality probably not an iron overload disorder." A total of 20.5% of 44 family members of patients had "typical" hemochromatosis-associated HFE genotypes (7.0% controls; p = 0.02). We conclude that most physicians who submitted specimens identify patients by phenotyping who have greater frequencies of "typical" hemochromatosis-associated HFE genotypes than controls, and that HFE mutation testing is useful in detecting hemochromatosis in family members of persons with hemochromatosis or iron overload.  相似文献   

9.
Patients with porphyria cutanea tarda (PCT) reveal a susceptibility to reversible inactivation of hepatic uroporphyrinogen decarboxylase, which might be triggered by alcohol, hepatitis C virus infection, and iron overload. Inherited factors that may predispose to clinically overt PCT also include sequence deviations in the HFE gene that is mutated in classical hemochromatosis. Here, we studied the prevalence of both common and rare hemochromatosis gene variations in 51 PCT patients and 54 healthy controls of German origin. The frequency of the common HFE gene mutation C282Y was 15.7 % in PCT patients and 2.8 % in healthy control individuals (P < 0.001). By contrast, the frequencies of the common H63D mutation did not differ, and the allele frequencies of the less frequently observed sequence deviations as substitution S65C in the HFE gene and mutation Y250X in the TFR2 gene underlying hemochromatosis type 3 (HFE3) were < 0.02 both in PCT patients and controls. Our results comprise the first molecular studies of both common and rare hemochromatosis gene variants in German PCT patients, indicating a significant role of the C282Y mutation in the pathogenesis of PCT.  相似文献   

10.
Most cases of genetic hemochromatosis (GH) are associated with the HFE C282Y/C282Y (p.Cys282Tyr/p.Cys282Tyr) genotype in white populations. The symptoms expressed by C282Y homozygotes are extremely variable. Only a few suffer from an overt disease. Several studies have suggested that, in addition to environmental factors, a genetic component could explain a substantial part of this phenotypic variation, although very few genetic factors have been identified so far. In the present study, we tested the association between common variants in candidate genes and hemochromatosis penetrance, in a large sample of C282Y homozygotes, using pretherapeutic serum ferritin level as marker of hemochromatosis penetrance. We focused on two biologically relevant gene categories: genes involved in non-HFE GH (TFR2, HAMP, and SLC40A1) and genes involved in the regulation of hepcidin expression, including genes from the bone morphogenetic protein (BMP) regulatory pathway (BMP2, BMP4, HJV, SMAD1, SMAD4, and SMAD5) and the IL6 gene from the inflammation-mediated regulation pathway. A significant association was detected between serum ferritin level and rs235756, a common single-nucleotide polymorphism (SNP) in the BMP2 genic region (P=4.42x10-5). Mean ferritin level, adjusted for age and sex, is 655 ng/ml among TT genotypes, 516 ng/ml in TC genotypes, and 349 ng/ml in CC genotypes. Our results further suggest an interactive effect on serum ferritin level of rs235756 in BMP2 and a SNP in HJV, with a small additive effect of a SNP in BMP4. This first reported association between common variants in the BMP pathway and iron burden suggests that full expression of HFE hemochromatosis is linked to abnormal liver expression of hepcidin, not only through impairment in the HFE function but also through functional modulation in the BMP pathway. Our results also highlight the BMP regulation pathway as a good candidate for identification of new modifier genes.  相似文献   

11.
Hemochromatosis is a genetic disorder of iron overload common in persons of northern European descent. We examined attitudes about testing for hemochromatosis in 118 young adults (YA) (19.7 years +/- 1.9) and 50 older adults (OA) (58.5 years +/- 13.7). Participants read about hemochromatosis and two related tests: transferrin saturation measurement (iron test) and HFE genotyping (HFE test). Interest in each test and attitudes about genetic testing were assessed. More than 80% of all participants were willing to undergo either test, if offered. A majority preferred the iron test because of the information it provides about current health. A majority of participants identified at least one benefit of genetic testing, with improved health through early detection/prevention being most common. YA were more likely to report disadvantages of genetic testing (p < 0.001) and were more concerned about potential negative psychological effects (p < 0.005). OA were more concerned about potential discrimination (p < 0.0001). These findings suggest that young and older adults view genetic testing as beneficial and would accept HFE testing were it offered as part of a screening program.  相似文献   

12.
The hypothesis according to which iron overload could be harmful has been extensively and controversially discussed in the literature. One underlying pathological mechanism may be elevated oxidative stress. Thus, we studied the correlation between hemochromatosis and an established marker of oxidative stress, 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha, iPF2alpha-III, 15-F2t-IsoP). We enrolled 21 patients with hemochromatosis, positive for the homozygous C282Y mutation in the HFE gene, and 21 healthy controls frequency-matched by age and gender in a case-control study design. The objective was to show that iron overload in HFE-related hemochromatosis is associated with increased oxidative stress assessed through 8-iso-PGF(2alpha) urinary excretion, and that oxidative stress is impacted by iron-removal treatment (phlebotomy). Study parameters were transferrin saturation, 8-iso-PGF(2alpha) urine excretion, transferrin, ferritin, serum iron, and vitamins A and E for all participants. Iron concentration in the liver and non-transferrin-bound iron were measured in patients only. We found a significant difference in 8-iso-PGF2alpha in patients (245 [interquartile range 157-348] pg/mg creatinine) compared with controls (128 [106-191] pg/mg creatinine, P = 0.002). Vitamin A was significantly reduced in cases (0.34 [0.25-1.83] microg/ml compared to 3.00 [2.11-3.39] microg/ml, P < 0.001), while vitamin E did not show a significant difference in cases (14.7 [11.5-18.1] microg/ml) compared with controls (14.9 [13.1-19.2] microg/ml, P = 0.52). After phlebotomy treatment and normalization of the iron parameters in the hemochromatosis group, serum vitamin A levels were significantly increased (1.36 [1.08-1.97] microg/ml, P = 0.035 vs. baseline, P < 0.001 vs. controls) and 8-iso-PGF2alpha urinary excretion was lowered to control levels (146 [117-198] pg/mg creatinine, P = 0.38 vs. controls). In our study, HFE-related hemochromatosis was associated with increased oxidative stress and hypovitaminemia A in C282Y homozygotes. The increased oxidative stress was reversible by normalization of the iron load by phlebotomy. Thus, phlebotomy is an effective and adequate means for reducing oxidative stress in these patients.  相似文献   

13.
遗传性血色病(Hereditary hemochromatosis,HHC)是一种罕见的常染色体隐性遗传病。本课题组招募了一个HHC的近亲婚配家系,包括一名患HHC的先证者以及同一代的4名不患HHC的成员。通过对该HHC先证者进行全外显子组测序,在目前已知的与遗传性血色病相关的5个基因(HAMP、HJV、TFR2、FPN和HFE)中,发现在铁调素调节蛋白(Hemojuvelin,HJV)的编码基因HJV上存在两个纯合突变(c.G18C和c.GC962_963AA)。其中,前者能够引起HJV蛋白发生p.Q6H的改变,但该突变的危害性较小,可能与血色病的发病无关;后者能够引起HJV蛋白发生p.C321X的改变,从而翻译出缺失糖基磷脂肌醇锚定结构域的截短型HJV蛋白。除了HJV基因上的纯合突变外,该先证者还携带了其他12个纯合突变,但这些突变的危害性均不强且其所在基因的功能与铁代谢无关。本实验室内部测序数据显示,在一般中国人群中不存在p.C321X突变,提示HJV基因上的p.C321X纯合突变可能是该HHC患者的致病性突变。与此相一致的是,4名不患HHC的家系成员中该位点为野生型纯合子或杂合子,均非p.C321X纯合子。文章首次报道了HJV p.C321X纯合突变可导致HHC,该结果将有助于遗传性血色病的基因诊断和产前咨询。  相似文献   

14.
Cystinuria represents 3% of nephrolithiasis in humans with an overall prevalence of 1 in 7,000 neonates. Two genes have been reported to account for the genetic basis of cystinuria, the SLC3A1 and the SLC7A9. Recently, the possible involvement of the SLC7A10 gene in the genetic basis of the disorder was also reported. In the present study, we found a total of 15 mutations in 20 Greek cystinuric patients. Eight mutations are novel, 4 in the SLC3A1: F266S, T351I, R456C, and N516D, and 4 in the SLC7A9: 479-1G>C, Y232C, D233E, and 1399+1G>T. Furthermore, 2 polymorphisms were identified in the SLC3A1 gene and 16 polymorphic variants were also found in the SLC7A9 gene of which the 235+18C>A, 604+10G>A, and 604+24T>C are novel. Finally, no mutation was found in the SLC7A10 gene in all patients. Only, the novel 634+8C>G and the previously reported 913-11C+T polymorphisms were identified in the SLC7A10 gene. In conclusion, a spectrum of SLC3A1 and SLC7A9 mutations are responsible for the genetic basis of cystinuria in Greek patients.  相似文献   

15.
Hereditary hemochromatosis (HH) is a very common autosomal recessive disorder of iron metabolism and frequently associated with mutations in the HFE gene. Molecular genetic testing for HFE mutations is considered valuable for carrier identification, as well as for early diagnosis of the disease, allowing simple treatment by phlebotomy and normal survival of patients. We have developed a reverse-hybridization assay for the routine diagnosis of eight previously described and one novel (E168Q) HFE point mutations. The test is based on multiplex DNA amplification and ready-to-use membrane teststrips, which contain oligonucleotide probes for each wild-type and mutated allele immobilized as an array of parallel lines. The procedure is rapid and accessible to automation on commercially available equipment, and by adding new probes the teststrip can easily be adapted to cover an increasing number of mutations.  相似文献   

16.
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron metabolism. Iron absorption from the gut is inappropriately high, resulting in increasing iron overload. The hemochromatosis gene (HFE) was identified in 1996 by extensive positional cloning by many groups over a period of about 20 years. Two missense mutations were identified. Homozygosity for one of these, a substitution of a tyrosine for a conserved cysteine (C282Y), has now clearly been shown to be associated with HH in 60-100% of patients. The role of the second mutation, the substitution of an aspartic acid for a histidine (H63D), is not so clear but compound heterozygotes for both these mutations have a significant risk of developing HH. Here we review other putative mutations in the HFE gene and document a number of diallelic polymorphisms in HFE introns.  相似文献   

17.
Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.  相似文献   

18.
Mutations of SLC40A1 encoding ferroportin (Fpn), the unique cellular iron exporter, severely affect iron homeostasis causing type 4 hereditary hemochromatosis, an autosomal dominant iron overload condition with variable phenotypic manifestations. This disease can be classified as type 4A, better known as “ferroportin disease”, which is due to “loss of function” mutations that lead to decreased iron export from cells, or as type 4B hemochromatosis, which is caused by “gain of function” mutations, conferring partial or complete resistance to hepcidin-mediated Fpn degradation.In this work, we discuss clinical and molecular findings on a group of patients in whom a SLC40A1 single copy missense variant was identified. Three novel variants, p.D181N, p.G204R and p.R296Q were functionally characterized. Fpn D181N and R296Q mutants can be classified as full or partial loss of function, respectively. Replacement of G204 with arginine appears to cause a more complex defect with impact both on iron export function and hepcidin sensitivity. This finding confirms the difficulty of predicting the effect of a mutation on the molecular properties of Fpn in order to provide an exhaustive explanation to the wide variability of the phenotype in type 4 hereditary hemochromatosis.  相似文献   

19.
Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH) type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal), six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations– c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family’s HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3%) patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40−2.94, p<0.001). Therefore, homozygous for this complex allele are at risk of having iron overload because they will produce two altered proteins—the p.63Asp [c.187G], and the protein lacking 88 amino acids encoded by exon 2. In summary, we provide evidence that the complex allele HFE-c.[187C>G;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the São Miguel population. Independent replication studies in other populations are needed to confirm this association.  相似文献   

20.
Hereditary hemochromatosis (HH) is an autosomal recessive disease caused by a defective iron absorption. C282Y is the most frequent HFE gene mutation causing HH in Northern European populations and their descendants. However, two other mutations, H63D and S65C, have been described as pathogenic changes. In this study, we have tried to evaluate the frequency of these three mutations in our community. Eighty-three patients with clinical and/or biochemical features of hemochromatosis and 150 controls were screened for H63D, S65C, and C282Y mutations using a PCR-restriction fragment length polymorphism (RFLP)-based strategy. In contrast to previous studies, 7% of the patients were homozygous for C282Y mutation. The remaining patients were 20% H63D homozygous, 10% H63D/C282Y compound heterozygous, 1% H63D/S65C compound heterozygous, 22% H63D heterozygous, 2% C282Y heterozygous, 2% S65C heterozygous, and 36% of patients lacked any of the three mutations studied, despite the fact that they showed clinical/biochemical features of hemochromatosis. We observed a high frequency of the H63D mutation in both the control group and patients, whereas the main genotypes implicated in HH in our series were H63D homozygous and H63D/C282Y compound heterozygous. We propose that the H63D mutation be analyzed in HH patients from our geographic area. Moreover, further studies are needed to elucidate the role of this mutation in the development of HH and the genetic, environmental or other factors that affect the genotype-phenotype correlation between H63D and hemochromatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号