首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylation pattern peculiarities revealed by immunocytochemical analysis of metaphase chromosomes from preimplanted human embryos with monoclonal antibodies against 5-methylcytosine are described. Chromosomes of 2-8-cell triploid human embryos are undermethylated, if compared to those from PHA-stimulated fetal cord blood lymphocytes. Hemimethylation (asymmetric labeling of sister chromatids) is typical for the most of embryonic chromosomes at 2-cell--blastocyst stages due most probably to a passive loss of methylation during initial cleavages. Diffuse labeling and sister chromatid exchanges are two other cytogenetic peculiarities revealed by immunofluorescent staining of early human embryos. Hypomethylation of pericentromeric heterochromatin of chromosomes 1, 9, 16 and different methylation status of some homologous chromosomes may distinguish them from metaphase chromosomes of lymphocytes. M-banding pattern typical for chromosomes from adult and cord blood lymphocytes initially appears in embryonic metaphase chromosomes as early as at a 8-cell stage to be established for most part of chromosomes of the karyotype at the morula-blastocyst stage only.  相似文献   

2.
S. Ito  K. Dan  D. Goodenough 《Chromosoma》1981,83(4):441-453
The ultrastructural features of chromosome vesicle formation in early sea urchin embryos and chromosome vesicle uptake of tritiated thymidine is described. Envelopes which resemble typical nuclear envelopes form around the condensed anaphase chromosomes. In late anaphase or early telophase, the chromosomes swell and decondense and it is at this time when tritiated thymidine is incorporated. This study shows that DNA synthesis in the rapidly dividing cells of early sea urchin embryos occurs in chromosome vesicles which form during anaphase.  相似文献   

3.
In Parascaris the mitotic chromosomes of gonial germline cells are holocentric and possess a continuous kinetochore along their entire length. By contrast, in meiotic cells, the centromeric activity is restricted to the heterochromatic tips where direct insertion of spindle microtubules into chromatin without any kinetochore plate is seen. In the presomatic cells of early embryos, which undergo heterochromatin elimination, only euchromatin shows kinetic activity. After developing a technique to separate the very resistant egg shell from the embryos, we studied the cell divisions during early embryogenesis by immunochemical and EM approaches. The results reported here show that in presomatic cells microtubules bind only the euchromatin where a continuous kinetochore plate is present. We also report observations suggesting that the binding of the long kinetochores to the mitotic spindle initiates to a limited number of sites and extends along the entire length, during chromosome condensation. The existence of different centromere stages in different cell types, rends Parascaris chromosomes a very good model to study centromere organization.  相似文献   

4.
Karyotypic studies of aborted fetuses have been used to draw the inference that the proportion of conceptuses with chromosome abnormalities is very high. Fluorescent in situ hybridization (FISH) studies of blastomeres from early cleavage embryos have provided some support for this inference but they are limited to the study of a few chromosomes. We describe the novel application of comparative genomic hybridization (CGH) to the study of numerical and structural abnormalities of single blastomeres from disaggregated 3-day-old human embryos. CGH results were obtained for 63 blastomeres from 12 embryos. Identification of all chromosomes with the exception of chromosomes 17, 19, 20 and 22 was possible. The embryos divided into four groups: (1) embryos with a normal CGH karyotype seen in all blastomeres; (2) embryos with consistent aneuploidy suggesting meiotic non-disjunction had occurred; (3) embryos that were mosaic generally with one or more cells showing aneuploidy for one or two chromosomes but some with cells showing extensive aneuploidy; and (4) one embryo with extensive aneuploidy in all blastomeres. The extensive aneuploidy in group 4 is interpreted as corresponding to the random aneuploidy seen in "chaotic" embryos reported by using interphase FISH. Partial chromosome loss and gain following chromosome breakage was observed in one embryo. Our analysis provides basic biological information on the occurrence of constitutional and post-zygotic chromosome abnormalities in early human embryos. Used in conjunction with embryo biopsy, diagnostic CGH should allow the exclusion of a proportion of embryos that appear normal but that have a poor probability of survival and, therefore, may improve the implantation rate after in vitro fertilization.  相似文献   

5.
We carried out systematic studies of the contribution of uniparental disomy for eight human chromosomes, 2, 9, 11, 15, 16, 19, 20, and 21, to the etiology of spontaneous mortality of human embryos. Most of these chromosomes have regions with orthologous imprinted genes syntenic with those on mouse chromosomes, the disturbed expression of which is related to embryolethality in mice. Screening of uniparental disomy in spontaneous 5- to 16-week abortuses was performed by evaluation of the pattern of inheritance of alleles of polymorphic microsatellite loci located in the studied chromosomes. A total of 100 human embryos with cytogenetically determined normal karyotype were studied, in which arrest at the early stages of intrauterine development was determined by ultrasound examination of pregnant women. During this study, 13 embryos were discarded due to karyotype anomalies or nonpaternity. No cases of uniparental disomy were found among the 87 studied abortuses for any of chromosomes studied. The analysis of the results of this study and four other studies concerning the search for uniparental disomy in dead embryos and fetuses did not reveal its elevated frequency in spontaneous abortuses as compared to the theoretically expected value based on evaluation of the probable combination of meiotic errors in human gametes. The data we obtained suggest that, first, uniparental disomies for human chromosomes that have regions with orthologous imprinted genes syntenic with mouse chromosomes do not contribute noticeably to the death of human embryos at the early developmental stages and, second, the mechanisms underlying embryolethality as a result of disturbed expression of imprinted loci differ markedly in mammals evolutionarily remote from one other.  相似文献   

6.
Multicolour fluorescence in situ hybridisation (FISH) analysis of interphase nuclei in cleavage stage human embryos has highlighted a high incidence of postzygotic chromosomal mosaicism, including both aneuploid and ploidy mosaicism. Indeed, some embryos appear to have a chaotic chromosomal complement in a majority of nuclei, suggesting that cell cycle checkpoints may not operate in early cleavage. Most of these studies, however, have only analysed a limited number of chromosomes (3-5), making it difficult to distinguish FISH artefacts from true aneuploidy. We now report analysis of 11 chromosomes in five sequential hybridisations with standard combinations of two or three probes and minimal loss of hybridisation efficiency. Analysis of a series of arrested human embryos revealed a generally consistent pattern of hybridisation on which was superimposed frequent deletion of one or both chromosomes of a specific pair in two or more nuclei indicating a clonal origin and continued cleavage following chromosome loss. With a binucleate cell in a predominantly triploid XXX embryo, the two nuclei remained attached during preparation and the chaotic diploid/triphoid status of every chromosome analysed was the same for each nucleus. Furthermore, in each hybridisation the signals were distributed as a mirror-image about the plane of attachment, indicating premature decondensation during anaphase consistent with a lack of checkpoint control.  相似文献   

7.
Comparative genomic hybridization (CGH) is an indirect DNA-based test which allows for the accurate analysis of aneuploidy involving any of the 24 types of chromosomes present (22 autosomes and the X and Y sex chromosomes). Traditionally, embryos have been screened using fluorescence in situ hybridization (FISH)--a technique that was limited in the number of chromosomes able to be identified in any one sample. Early CGH reports on aneuploidy in preimplantation embryos showed that any of the 24 chromosomes could be involved and so FISH methods were going to be ineffective in screening out abnormal embryos. Our results from routine clinical application of array CGH in preimplantation genetic diagnosis (PGD) patients confirm previous reports on patterns of chromosomal contribution to aneuploidy. The pregnancy outcomes following embryo transfer also indicate that despite the requirement to freeze embryos, rates are encouraging, and successful ongoing pregnancies can be achieved.  相似文献   

8.
We carried out systematic studies of the contribution of uniparental disomy for eight human chromosomes, 2, 9, 11, 15, 16, 19, 20, and 21, to the etiology of embryolethality. Most of these chromosomes have regions with orthologous imprinted genes syntenic with those on mouse chromosomes, the disturbed expression of which is related to embryolethality in mice. Screening of uniparental disomy in spontaneous abortuses of 5–16 weeks of pregnancy was performed by evaluation of the pattern of inheritance of alleles of polymorphic microsatellite loci located in the studied chromosomes. A total of 100 human embryos with cytogenetically determined normal karyotype were studied, in which arrest at the early stages of intrauterine development was determined by ultrasound examination of pregnant women. During this study, 13 embryos were discarded due to revealed karyotype anomalies or nonpaternity. No cases of uniparental disomy were found among the 87 studied abortuses for any of chromosomes studied. The analysis of the results of this study and four other studies concerning the search for uniparental disomy in dead embryos and fetuses did not reveal its elevated frequency in spontaneous abortuses as compared to the theoretically expected value based on evaluation of the probable combination of meiotic errors in human gametes. The data we obtained suggest that, first, uniparental disomies for human chromosomes that have regions with orthologous imprinted genes syntenic with mouse chromosomes do not contribute noticeably to the death of human embryos at the early developmental stages and, second, the mechanisms underlying embryolethality as a result of disturbed expression of imprinted loci differ markedly in evolutionarily remote mammals.  相似文献   

9.
It is difficult to observe the behavior of chromosomes in early wheat embryos because they are wrapped in several cell layers of the ovary. Here we conducted genomic in situ hybridization on sections of ovary embedded in Technovit 7100, a resinous compound suitable for in situ hybridization of mRNA in sectioned tissues. With this resin it is possible to make thin sections with high resolution, no autofluorescence, and good water permeability. These features enable histochemical study using fluorescence microscopy. We established the most suitable conditions for the denaturation of target DNA embedded in Technovit resin, and performed GISH on them. Using this method, we identified Leymus mollis chromosomes in the young ovary of F1 hybrids between wheat and L. mollis. Furthermore, we observed the behavior of maize chromosomes in early wheat x maize hybrid embryos.  相似文献   

10.
Previous studies on early female mouse embryos revealed the presence of two kinds of inactive X chromosomes, one replicating late and the other early in the DNA synthetic period. The X chromosome that replicates early is of special interest because of its paternal origin, preferential occurrence in trophectoderm and primitive endoderm derivatives, and programmed shift to the late replicator. This study by BrdU labeling and acridine orange fluorescence staining was undertaken to examine whether the inactive X chromosome behaves in a similar manner in other laboratory mammals. In rat embryos the paternal X chromosome was found to show the same behavior in extraembryonic tissues. Early replicating chromosomes were also found in the extraembryonic regions of Chinese hamster and rabbit embryos, although their parental origin could not be determined due to the absent of X chromosome polymorphism in these species. Probably the early replicating X chromosome occurs commonly in mammals. Its functional significance is unknown.  相似文献   

11.
It is difficult to observe the behavior of chromosomes in early wheat embryos because they are wrapped in several cell layers of the ovary. Here we conducted genomic in situ hybridization on sections of ovary embedded in Technovit 7100, a resinous compound suitable for in situ hybridization of mRNA in sectioned tissues. With this resin it is possible to make thin sections with high resolution, no autofluorescence, and good water permeability. These features enable histochemical study using fluorescence microscopy. We established the most suitable conditions for the denaturation of target DNA embedded in Technovit resin, and performed GISH on them. Using this method, we identified Leymus mollis chromosomes in the young ovary of F1 hybrids between wheat and L. mollis. Furthermore, we observed the behavior of maize chromosomes in early wheat × maize hybrid embryos.  相似文献   

12.
This report is a retrospective study of preimplantation embryos diagnosed with monosomy for chromosomes 13, 15, 16, 18, 21, 22, X and Y on day 3 to determine the rate of true positives, false positives and/or mosaicism and to assess if these embryos are suitable for in vitro fertilization (IVF) transfer. In a one year period, 80 patients went through preimplantation genetic diagnosis for aneuploidy screening (PGD-AS). Monosomy was diagnosed in 51 embryos. Fluorescence in situ hybridization (FISH) was then performed on the blastomeres at day 5-7 with commercially available probes using the same probe set that initially identified monosomy for chromosomes 13, 16, 21 and 22 or chromosomes 15, 18, X and Y. Based on FISH analysis, the monosomy diagnosed during routine PGD-AS analysis was confirmed in 17 of the 51 embryos. A euploid result for the specific chromosomes tested was observed in 16 of the 51 embryos while mosaicism was found in the remaining 18 embryos. This results in an estimated false positive rate of 3.8% for a diagnosis of monosomy. Reanalysis of these embryos demonstrates that the majority of monosomy diagnoses represents true monosomy or mosaicism and should be excluded for transfer in IVF. Furthermore, improved understanding from recent emerging data regarding the fate of oocytes in women with advanced maternal age undergoing IVF to the development of early embryos may provide a valuable insight into the mechanism of chromosome mosaicism.  相似文献   

13.
文昌鱼的进化地位十分重要,对其染色体的研究在进化和比较基因组学方面有重要意义。然而文昌鱼的染色体制备困难,使研究受到了限制。本文介绍了一种改良的文昌鱼胚胎细胞染色体标本制备方法,以及用文昌鱼成体再生细胞制备染色体,首次获得了文昌鱼体细胞中期染色体标本,并观察了厦门2种文昌鱼的染色体,其中白氏文昌鱼(Branchiostoma belcheri)二倍体2n=40,日本文昌鱼(B. japonicum)二倍体2n=36。再次从细胞分类学角度证实白氏文昌鱼和日本文昌鱼作为两个独立物种的分类地位。  相似文献   

14.
maternal haploid (mh) is a strict maternal effect mutation that causes the production of haploid gynogenetic embryos (eggs are fertilized but only maternal chromosomes participate in development). We conducted a cytological analysis of fertilization and early development in mh eggs to elucidate the mechanism of paternal chromosome elimination. In mh eggs, as in wild-type eggs, male and female pronuclei migrate and appose, the first mitotic spindle forms, and both parental sets of chromosomes congress on the metaphase plate. In contrast to control eggs, mh paternal sister chromatids fail to separate in anaphase of the first division. As a consequence the paternal chromatin stretches and forms a bridge in telophase. During the first three embryonic divisions, damaged paternal chromosomes are progressively eliminated from the spindles that organize around maternal chromosomes. A majority of mh embryos do not survive the deleterious presence of aneuploid nuclei and rapidly arrest their development. The rest of mh embryos develop as haploid gynogenetic embryos and die before hatching. The mh phenotype is highly reminiscent of the early developmental defects observed in eggs fertilized by ms(3)K81 mutant males and in eggs produced in incompatible crosses of Drosophila harboring the endosymbiont bacteria Wolbachia.  相似文献   

15.
Chinese hamster stocks with various structurally abnormal chromosomes have been produced by X irradiation. Among these stocks, 18 with various reciprocal translocations were used to investigate the participation of unbalanced gametes in fertilization and the development of unbalanced embryos. Among males as well as females heterozygous for the same translocation, there is no difference in the frequency of each disjunctional class. The participation of chromosomally unbalanced gametes in fertilization was investigated by chromosomal analysis of meiotic cells in heterozygotes for the 18 reciprocal translocations and pronuclei of fertilized ova obtained from crossing these heterozygotes. Compared with the expected frequencies from MII scoring, the frequencies of male pronuclei having a common deficiency of chromosome 1 (1q17-->1q42) or chromosome 3 (3p23-->3q31) decreased significantly in one-cell embryos. However, the frequencies of male pronuclei with other abnormalities were all consistent with those expected from MII scoring. In contrast, the frequencies of female pronuclei with any karyotype including the same abnormalities as those decreased in male pronuclei from the translocation heterozygotes were all consistent with those estimated from MII scoring. These results revealed clearly that most gametes with nullisomies as well as disomies for any chromosomal segments may participate in fertilization, whereas only male gametes nullisomic for certain segments of chromosomes 1 and 3 failed to participate in fertilization. The zygotic selection of chromosomal imbalance was also investigated by direct chromosomal and morphological analyses of preimplantation embryos from crosses between karyotypically normal females and male heterozygotes from the 18 stocks with various reciprocal translocations. These analyses revealed that some embryos were arrested in development at the two-cell stage. The karyotype of these two-cell embryos had a common deficiency in a segment of chromosome 1 or chromosome 2. Embryos with partial monosomy including chromosomes 1, 3, 4 and 5 showed arrested development at four- to eight-cell stages. Among day 4 embryos, some chromosomally unbalanced embryos, mainly with a deficiency of segments of chromosomes 1p, 1q, 2q, 5q, 7q and 8, had fewer blastomeres than karyotypically normal and balanced embryos. The homology between Chinese hamster and mouse chromosomes relating to abnormal embryogenesis at early stages has been partially confirmed from reported maps of chromosomes. The Chinese hamster is useful for further cytogenetic studies during the stages of meiosis and early embryogenesis.  相似文献   

16.
17.
It is difficult to obtain intact embryos, especially intact early embryos, from insect eggs because of their small sizes. Based on the means traditionally used to get silkworm embryos and the previous approaches used for getting Drosophila embryos, we established a novel method of silkworm embryo preparation. The new method is straightforward and easy to operate. Silkworm embryos could be prepared without severe damage in large quantities by this new protocol. In addition, the novel method of silkworm embryo preparation is quite suitable for immunohistochemistry.  相似文献   

18.
Silver staining technique visualizing argentophilic nucleolus organizer regions (Ag-NORs) was used for studying parthenogenetic mouse embryos produced by artificial activation of oocytes in Ca(2+)-Mg(2+)-free medium. Ag-NOR-containing chromosomes were detected in metaphases of parthenogenetic embryos during six successive cleavage divisions starting with the two-cell stage. The frequency of metaphases with varying AG-NOR number in diploid parthenogenones was similar to that in the control (fertilized) embryos. Average number of metaphase Ag-NOR chromosomes (calculated per diploid chromosome set) in haploid parthenogenones exceeded that in the control; in some cases all NORs were stained by silver. This is evidence that latent ribosomal cistrons in some chromosomes can be activated.  相似文献   

19.
Autosomal monosomies represent a severe form of genomic disbalance which determines elimination of human embryos already at the preimplantation stages. As a rule, they occur very rarely in the materials of spontaneously aborted embryos and fetuses. Molecular-cytogenetic studies were carried out on the karyotype of cells of 60 spontaneous abortuses of I trimester of pregnancy with cell degeneration or absence of cell proliferation in the cultures, as a result of which the cells could not be studied using the standard metaphase analysis. The embryos were characterized by an unexpectedly high frequency of mosaic variants of monosomies for chromosomes 7, 15, 21, and 22, which amounted to 19% of all chromosome aberrations. Lethal forms of monosomies for human chromosomes 7 and 15 were described for the first time, since they are not found in spontaneous abortuses by standard cytogenetic methods. A hypothesis was proposed which accounts for the possibility of early postimplantation lethality of the embryos with mosaic forms of autosomal monosomies. The differences were found between the cells with monosomies for different autosomes in the mechanisms of origin, intertissue localization, and phenotypic effects. It was shown that monosomies for chromosomes 7, 15, 21, and 22 in a mosaic state with the normal cell line can be compatible with the early stages of postimplantation differentiation of the cytotrophoblast. Predominant compartmentalization of the cells with monosomies for chromosomes 21 and 22 in the extraembryonic mesoderm, a derivative of epiblast, can be a critical factor, which makes it impossible the normal morphogenesis of embryonic structures.  相似文献   

20.
Autosomal monosomies represent a severe form of genomic disbalance which determines elimination of human embryos already at the preimplantation stages. As a rule, they occur very rarely in the materials of spontaneously aborted embryos and fetuses. Molecular-cytogenetic studies were carried out on the karyotype of cells of 60 spontaneous abortuses of I trimester of pregnancy with cell degeneration or absence of cell proliferation in the cultures, as a result of which the cells could not be studied using the standard metaphase analysis. The embryos were characterized by an unexpectedly high frequency of mosaic variants of monosomies for chromosomes 7, 15, 21, and 22, which amounted to 19% of all chromosome aberrations. Lethal forms of monosomies for human chromosomes 7 and 15 were described for the first time, since they are not found in spontaneous abortuses by standard cytogenetic methods. A hypothesis was proposed which accounts for the possibility of early postimplantation lethality of the embryos with mosaic forms of autosomal monosomies. The differences were found between the cells with monosomies for different autosomes in the mechanisms of origin, intertissue localization, and phenotypic effects. It was shown that monosomies for chromosomes 7, 15, 21, and 22 in a mosaic state with the normal cell line can be compatible with the early stages of postimplantation differentiation of the cytotrophoblast. Predominant compartmentalization of the cells with monosomies for chromosomes 21 and 22 in the extraembryonic mesoderm, a derivative of epiblast, can be a critical factor, which makes the normal morphogenesis of embryonic structures impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号