首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Kaminaga Y  Sahin FP  Mizukami H 《FEBS letters》2004,567(2-3):197-202
Catharanthus roseus cell suspension cultures are capable of converting exogenously supplied curcumin to various glucosides. The glucosylation efficiency is enhanced by addition of methyl jasmonate (MJ) to the cultures prior to curcumin administration. Two cDNAs encoding UDP-glucosyltransferases (CaUGT1 and CaUGT2) were isolated from a cDNA library of cultured C. roseus cells, using a PCR method directed at the conserved UDP-binding domain of plant glycosyltransferases. The sequence identity between their deduced amino acid sequences was 27%. The expression of both genes was up-regulated by addition of MJ to the cell cultures although the mRNA level of CaUGT1 was much lower than that of CaUGT2. The corresponding cDNAs were expressed in Escherichia coli as fusion proteins with maltose-binding protein. The recombinant CaUGT1 exhibited no glucosylation activity with either curcumin or curcumin monoglucoside as substrate, whereas the recombinant CaUGT2 catalyzed the formation of curcumin monoglucoside from curcumin and also conversion of curcumin monoglucoside to curcumin diglucoside. The use of the recombinant CaUGT2 may provide a useful new route for the production of curcumin glucosides.  相似文献   

3.
4.
Saliva influences rumen function in cattle, yet the biochemical role for most of the bovine salivary proteins (BSPs) has yet to be established. Two cDNAs (BSP30a and BSP30b) from bovine parotid salivary gland were cloned and sequenced, each coding for alternate forms of a prominent protein in bovine saliva. The BSP30 cDNAs share 96% sequence identity with each other at the DNA level and 83% at the amino acid level, and appear to arise from separate genes. The predicted BSP30a and BSP30b proteins share 26-36% amino acid identity with parotid secretory protein (PSP) from mouse, rat and human. BSP30 and PSP are in turn more distantly related to a wider group of proteins that includes lung-specific X protein, also known as palate, lung, and nasal epithelium clone (LUNX/PLUNC), von Ebner's minor salivary gland protein (VEMSGP), bactericidal permeability increasing protein (BPI), lipopolysaccharide binding protein (LBP), cholesteryl ester transfer protein (CETP), and the putative olfactory ligand-binding proteins RYA3 and RY2G5. Bovine cDNAs encoding homologs of LUNX/PLUNC and VEMSGP were isolated and sequenced. Northern blot analysis showed that LUNX/PLUNC, BSP30 and VEMSGP are expressed in bovine salivary tissue and airways, and that they have non-identical patterns of expression in these tissues. The expression of both BSP30a and BSP30b is restricted to salivary tissue, but within this tissue they have distinct patterns of expression. The proximity of the human genes coding for the PSP/LBP superfamily on HSA20q11.2, their similar amino acid sequence, and common exon segmentation strongly suggest that these genes evolved from a common ancestral gene. Furthermore, they imply that the BSP30a and BSP30b proteins may have a function in common with other members of this gene family.  相似文献   

5.
N-myristoyltransferase (NMT) exists in two isoforms, NMT1 and NMT2, that catalyze myristoylation of various proteins crucial in signal transduction, cellular transformation, and oncogenesis. We have recently demonstrated that NMT1 is essential for the early development of mouse embryo. In this report, we have demonstrated that an invariant consequence of NMT1 knock out is defective myelopoesis. Suppressed macrophage colony forming units were observed in M-CSF-stimulated bone marrow cells from heterozygous (+/-) Nmt1-deficient mice. Homozygous (-/-) Nmt1-deficient mouse embryonic stem cells resulted in drastic reduction of macrophages when stimulated to differentiate by M-CSF. Furthermore, to understand the requirement of NMT1 in the monocytic differentiation we investigated the role of NMT, pp60c-Src (NMT substrate) and heat shock cognate protein 70 (inhibitor of NMT), during PMA-induced differentiation of U937 cells. Src kinase activity and protein expression increased during the differentiation process along with regulation of NMT activity by hsc70. NMT1 knock down in PMA treated U937 cells showed defective monocytic differentiation. We report in this study novel observation that regulated total NMT activity and NMT1 is essential for proper monocytic differentiation of the mouse bone marrow cells.  相似文献   

6.
7.
Two human homologues of protein kinase C-epsilon (E1 and E2) were isolated from two distinct cDNA libraries. Sequence comparisons to PKC-epsilon cDNAs from several species indicated that each of these human epsilon clones contained cloning artifacts. Thus, a composite PKC-epsilon (E3) clone was derived from clones E1 and E2. Human PKC-epsilon (E3) has an overall sequence identity of 90-92% at the nucleotide level compared to the previously characterized mouse, rat and rabbit clones. At the amino acid level, the deduced human epsilon sequence shows a 98-99% identity with the mouse, rat and rabbit sequences. Expression of the human PKC-epsilon clone in Sf9 cells confirmed that the recombinant protein displayed protein kinase C activity and phorbol ester binding activity. The recombinant protein was also recognized by two distinct epsilon-specific polyclonal antibodies.  相似文献   

8.
9.
Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces cerevisiae. Histidine-tagged Arabidopsis PMM (AtPMM) purified from Escherichia coli converted mannose-1-phosphate into mannose-6-phosphate and glucose-1-phosphate into glucose-6-phosphate, with the former reaction being more efficient than the latter one. In Arabidopsis and N. benthamiana, PMM was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM and provides genetic evidence on the involvement of PMM in the biosynthesis of AsA in Arabidopsis and N. benthamiana plants.  相似文献   

10.
Usher syndrome type IIA (MIM: 27601) is an autosomal recessive disorder characterized by moderate to severe congenital deafness and progressive retinitis pigmentosa. We recently identified the human Usher syndrome type IIA gene (USH2A) on chromosome 1q41, which encodes a protein possessing 10 laminin epidermal growth factor and four fibronectin type 3 domains, both commonly observed in extracellular matrix proteins. To gain insight into the pathogenesis of Usher syndrome type IIA, we isolated and characterized the murine (Ush2a) and rat (rat Ush2a) orthologs of human USH2A. We mapped mouse Ush2a by fluorescence in situ hybridization to mouse chromosome 1 in the region syntenic to human chromosome 1q41. Rat Ush2a has been localized by radiation hybrid mapping to rat chromosome 13 between d13rat49 and d13rat76. The mouse and rat genes, similar to human USH2A, are expressed primarily in retina and cochlea. Mouse Ush2a encodes a 161-kDa protein that shows 68% identity and 9% similarity to the human USH2A protein. Rat Ush2a encodes a 167-kDa protein with 64% identity and 10% similarity to the human protein and 81% identity and 5% similarity to the mouse USH2A protein. The predicted amino acid sequence of the mouse and rat proteins, like their human counterpart, contains a leader sequence, an amino-terminal globular domain, 10 laminin epidermal growth factor domains, and four carboxy-terminal fibronectin type III motifs. With in situ hybridization, we compared the cellular expression of the USH2A gene in rat, mouse, and human retinas. USH2A mRNA in the adult rat, mouse, and human is expressed in the cells of the outer nuclear layer of the retina, one of the target tissues of the disease. In the developing rat retina, Ush2a mRNA expression appears in the neuroepithelium at embryonic day 17.  相似文献   

11.
12.
13.
14.
Activity of rat Mx proteins against a rhabdovirus.   总被引:20,自引:13,他引:7       下载免费PDF全文
E Meier  G Kunz  O Haller    H Arnheiter 《Journal of virology》1990,64(12):6263-6269
Upon stimulation with alpha/beta interferon, rat cells synthesize three Mx proteins. Sequence analysis of corresponding cDNAs reveals that these three proteins are derived from three distinct genes. One of the rat cDNAs is termed Mx1 because it is most closely related to the mouse Mx1 cDNA and because it codes for a nuclear protein that, like the mouse Mx1 protein, inhibits influenza virus growth. However, this protein differs from mouse Mx1 protein, in that it also inhibits vesicular stomatitis virus (VSV), a rhabdovirus. A second rat cDNA is more closely related to the mouse Mx2 cDNA and directs the synthesis of a cytoplasmic protein that inhibits VSV but not influenza virus. The third rat cDNA codes for a cytoplasmic protein that differs from the second one in only eight positions and has no detectable activity against either virus. These results indicate that rat Mx proteins have antiviral specificities not anticipated from the analysis of the murine Mx1 protein.  相似文献   

15.
16.
In this report, we describe molecular cloning and characterization of cDNAs encoding a novel rat prolactin-like protein. The rat cDNAs were isolated from the decidua and the gene was named PLP-I. cDNAs for the mouse equivalent were also cloned by the cross-hybridization technique. Pregnancy-specific expression of the rat PLP-I gene was observed in the rat placenta by Northern analysis. Location of signal peptide cleavage sites in rat and mouse pre-PLP-I proteins was predicted using a theoretical method. A molecular phylogenetic tree for the growth hormone-prolactin superfamily including the novel member, PLP-I, constructed using the neighbor-joining method, places rat/mouse PLP-I closest to rat/mouse placental lactogen I and II.  相似文献   

17.
In a previous publication we identified a novel human GTP-binding protein that was related to DRG, a developmentally regulated GTP-binding protein from the central nervous system of mouse. Here we demonstrate that both the human and the mouse genome possess two closely related drg genes, termed drg1 and drg2. The two genes share 62% sequence identity at the nucleotide and 58% identity at the protein level. The corresponding proteins appear to constitute a separate family within the superfamily of the GTP-binding proteins. The DRG1 and the DRG2 mRNA are widely expressed in human and mouse tissues and show a very similar distribution pattern. The human drg1 gene is located on chromosome 22q12, the human drg2 gene on chromosome 17p12. Distantly related species including Caenorhabditis elegans, Schizosaccharomyces pombe and Saccharomyces cerevisiae also possess two drg genes. In contrast, the genomes of archaebacteria (Halobium, Methanococcus, Thermoplasma) harbor only one drg gene, while eubacteria do not seem to contain any. The high conservation of the polypeptide sequences between distantly related organisms indicates an important role for DRG1 and DRG2 in a fundamental pathway.  相似文献   

18.
Dihydroceramide Delta4-desaturase (DES) catalyzes the desaturation of dihydroceramide into ceramide. In mammals, two gene isoforms named DES1 and DES2 have recently been identified. The regulation of these enzymes is still poorly understood. This study was designed to examine the possible N-myristoylation of DES1 and DES2 and the effect of this co-translational modification on dihydroceramide Delta4-desaturase activity. N-MyristoylTransferases (NMT) catalyze indeed the formation of a covalent linkage between myristoyl-CoA and the N-terminal glycine of candidate proteins, as found in the sequence of DES proteins. The expression of both rat DES in COS-7 cells evidenced first that DES1 but not DES2 was associated with an increased dihydroceramide Delta4-desaturase activity. Then, we showed that recombinant DES1 was myristoylated in vivo when expressed in COS-7 cells. In addition, in vitro myristoylation assay with a peptide substrate corresponding to the N-terminal sequence of the protein confirmed that NMT1 has a high affinity for DES1 myristoylation motif (apparent K(m)=3.92 microM). Compared to an unmyristoylable mutant form of DES1 (Gly replaced by an Ala), the dihydroceramide Delta4-desaturase activity of the myristoylable DES1-Gly was reproducibly and significantly higher. Finally, the activity of wild-type DES1 was also linearly increased in the presence of increased concentrations of myristic acid incubated with the cells. These results demonstrate that DES1 is a newly discovered myristoylated protein. This N-terminal modification has a great impact on dihydroceramide Delta4-desaturase activity. These results suggest therefore that myristic acid may play an important role in the biosynthesis of ceramide and in sphingolipid metabolism.  相似文献   

19.
N-myristoyltransferases (NMT) add myristate to the NH(2) termini of certain proteins, thereby regulating their localization and/or biological function. Using RNA interference, this study functionally characterizes the two NMT isozymes in human cells. Unique small interfering RNAs (siRNA) for each isozyme were designed and shown to decrease NMT1 or NMT2 protein levels by at least 90%. Ablation of NMT1 inhibited cell replication associated with a loss of activation of c-Src and its target FAK as well as reduction of signaling through the c-Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays showed that depletion of either NMT isozyme induced apoptosis, with NMT2 having a 2.5-fold greater effect than NMT1. Western blot analyses revealed that loss of NMT2 shifted the expression of the BCL family of proteins toward apoptosis. Finally, intratumoral injection of siRNA for NMT1 or for both NMT1 and NMT2 inhibited tumor growth in vivo, whereas the same treatment with siRNA for NMT2 or negative control siRNA did not. Overall, the data indicate that NMT1 and NMT2 have only partially overlapping functions and that NMT1 is critical for tumor cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号