首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of the cerebral circulation has been formulated. It was based on non-linear equations of pulsatile fluid flow in distensible conduits and applied to a network simulating the entire cerebral vasculature, from the carotid and vertebral arteries to the sinuses and the jugular veins. The quasilinear hyperbolic system of equations was numerically solved using the two-step Lax-Wendroff scheme. The model's results were in good agreement with pressure and flow data recorded in humans during rest. The model was also applied to the study of autoregulation during arterial hypotension. A close relationship between cerebral blood flow (CBF) and capillary pressure was obtained. At arterial pressure of 80 mmHg, the vasodilation of the pial arteries was unable to maintain CBF at its control value. At the lower limit of autoregulation (60 mm Hg), CBF was maintained with a 25% increase of zero transmural pressure diameter of nearly the whole arterial network.  相似文献   

2.
The cerebral vessels of the rat were filled with inks of different colours. The topography of the vessels of the amygdala were reconstructed from serial sections. The circulation of the individual amygdaloid nuclei was studied in detail. The arteries of the amygdala arise from the deep and cortical branches of the internal carotid and middle cerebral arteries. Eight major arteries were found to supply blood to the amygdala. All amygdaloid nuclei receive branches from both arterial trunks. The vast majority of the veins are collected by the middle cerebral and basal veins. Only a small fraction drains into the hippocampal vein. Of particular importance are the veins ending in the basal vein and those cortical ones that run in the rhinal sulcus. All amygdaloid nuclei have a multidirectional drainage.  相似文献   

3.
Changes in pial arteries diameter and the condition of blood flow "dead point" in arterial anastomoses were established using the brain window during an acute increase of mean arterial pressure (MAP) induced by intravenous injection of norepinephrine (NE) with microcineangiography and the analysis of films and frames on a montage table and TAS ("Leitz"). During an acute increase of MAP the movement of blood flow "dead point" in anastomoses and the expansion of plasma segments occurred much more frequently than in normotension. The stabilization of blood flow "dead point" was observed at high constant MAP. Pronounced dilation of both pial arteries and veins first occurred in anastomoses, then spread to arterial branches. It is assumed that high vulnerability of the brain vessels of the borderline zones is due to breakthrough in autoregulation of cerebral blood flow on its upper limit and depends on the repeatedly changing directions of the blood flow and its moving "dead point", as the peripheral resistance of arterial anastomoses-forming branches under these circumstances changes in an irregular manner.  相似文献   

4.
The scientific objectives was to quantify the vascular changes in the brain, eye fundus, renal parenchyma, and splanchnic network. Heart, Portal, Jugular, femoral veins were investigate by Echography. The cerebral mesenteric, renal and ophthalmic arteries were investigated by Doppler. Eye fundus vein an papilla were investigated by optical video eye fundus. The Left ventricle volume decreased as usual in HDT. The cerebral and ophthalmic vascular resistances did'nt change whereas the eye fundus papilla and vein, and the Jugular vein increased. These arterial and venous data confirm the existence of cephalic venous blood stasis without sign of intracranial hypertension. On the other hand the kidney volume increased which is in agreement with blood flow stagnation at this level. At last the Mesenteric vascular resistance decreased and the Portal vein section increased in HDT which is in favor of an increase in flow and flow volume through the splanchnic area.  相似文献   

5.
Blood flow to the ovary varies dramatically in both magnitude and distribution throughout the estrous cycle to meet the hormonal and metabolic demands of the ovarian parenchyma as it cyclically develops and regresses. Several vascular components appear to be critical to vascular regulation of the ovary. As a first step in resolving the role of the resistance arteries and their paired veins in regulating ovarian blood flow and transvascular exchange, we characterized the architecture and intravascular pressure profile of the utero-ovarian resistance artery network in an in vivo preparation of the ovary of the anesthetized Golden hamster. We also investigated estrous cycle-dependent changes in resistance artery tone. The right ovary and the cranial aspect of the uterus in 26 female hamsters were exposed for microcirculatory observations. Estrous-cycle phase was determined in each animal before experimentation. The utero-ovarian vascular architecture was determined and resistance artery diameters were measured in each animal by video microscopy. Servo-null intravascular pressure measurements were made throughout the uteroovarian arterial network in 11 of the animals. Architectural data showed a complex anastomotic network jointly supplying the uterus and ovary. Resistance arteries showed a high degree of coiling and close apposition to veins, maximizing countercurrent-exchange capabilities. Arterial pressure dropped below 60% of systemic arterial pressure before the arteries entered the ovary. Both the ovarian artery and the uterine artery, which jointly feed the ovary, showed cycle day-dependent changes in diameter. Arterial diameters were smallest on the day following ovulation, during the brief luteal phase of the hamster. The data show that resistance arteries comprise a critical part of a complex network designed for intimate local communication and control and suggest that these arteries may play an important role in regulating ovarian blood flow in an estrous cycle-specific manner.  相似文献   

6.
The human tela choroidea of the lateral ventricle is vascularized by arteries arising from the two systems which form the arterial circle of the base, i.e. the internal carotid system and the vertebral basilar system. This blood supply is given by one anterior choroidal artery and by several posterior choroidal arteries. These arteries anastomose to form multiple indirect and remote links between the carotid and vertebral basilar systems. The capillary networks of the tela choroidea of the lateral ventricle consists of a velar network and of a choroidal network. This duality is constantly observed in the choroid formations of the human brain. The venous vascularization of the tela is tributary of the venous circle of the base of the brain through choroidal veins that drain either into the internal cerebral veins or into the basal veins.  相似文献   

7.
Flow-mediated dilation (FMD) is strongly dependent on arterial size, but the reasons for this phenomenon are poorly understood. We have previously shown that FMD is greater in small brachial arteries because the shear stress stimulus is greater in small brachial arteries. However, it is unclear why the shear stimulus is greater in small arteries. Furthermore, this relationship has not been investigated in other, differently sized arterial beds. Postischemic systolic shear stress and resulting FMD were evaluated in the brachial and femoral arteries of 24 young, healthy adults using phase-contrast magnetic resonance imaging. Arterial shear and radius were calculated from the velocity profile via a best-fit parabola before and after occlusion. Summing the velocity pixels provided hyperemic systolic flow. FMD was proportional to hyperemic shear in the brachial and femoral arteries (P < 0.0001, r = 0.60). Hyperemic systolic flow was proportional to radius2 (P < 0.0001, r = 0.93). Applying this relationship to the Poiseuille equation (shear is proportional to flow/radius3) shows that hyperemic shear is proportional to radius2/radius3 and, therefore, explains why hyperemic shear is proportional to 1/radius. We conclude that FMD is proportional to hyperemic systolic shear stress in both the brachial and the femoral arteries. The hyperemic shear stimulus for FMD is greater in small arteries due to the dependence of postischemic systolic flow on radius squared. Therefore, greater FMD in small arteries does not necessarily reflect better conduit artery endothelial function. Evaluating the shear stimulus using phase-contrast magnetic resonance imaging enhances the understanding of mechanisms underlying FMD.  相似文献   

8.
Peripheral blood circulation was investigated in the experiment with “dry” immersion by the method of ultrasonic Doppler examination, including transcranial Doppler examination. The linear blood velocity (LBV) in the main arteries and veins of the head and lower extremities was recorded in eight healthy volunteers who stayed in an immersion bath for seven days. The examinations were carried out on day 2 and 5 of immersion and on day 2 of the rehabilitation period. The results were compared with the background values of the blood velocities. The LBV was revealed to slow down in all the examined main arteries and veins of the head and lower extremities; the changes were the most pronounced in the venous system. The dynamics of the venous cerebral blood flow that indirectly attests to the elevation of intracranial pressure was observed on day 5 in some of the volunteers. In the period of recovery, the parameters of the arterial LBV mainly returned to the background values, while the venous blood circulation recovered slower, which indicated an aftereffect of support deprivation factors.  相似文献   

9.
The possibility of reverse perfusion of the brain (in which arterial blood flows to brain tissues through venous vessels, and venous blood is drained by the arteries) was studied in acute and chronic experiments on dogs. Blood pressure in cerebral veins could reach 90--120 mm Hg, in Willisii arteries it was 5--35 mm Hg. Liquor pressure reached 20--35 mmHg. After temporary arterialization of the brain venous system (10, 30 and 60 min) the animals survived without impairment of the brain function and behaviour. In the future reverse perfusion of the brain (in which blood pressure in the arteries falls to the level of venous pressure) could be used as a means of urgent surgical intervention in cases of threatened or beginning intracranial arterial hemorrhage.  相似文献   

10.
The hemodynamic alteration in the cerebral circulation caused by the geometric variations in the cerebral circulation arterial network of the circle of Wills (CoW) can lead to fatal ischemic attacks in the brain. The geometric variations due to impairment in the arterial network result in incomplete cerebral arterial structure of CoW and inadequate blood supply to the brain. Therefore, it is of great importance to understand the hemodynamics of the CoW, for efficiently and precisely evaluating the status of blood supply to the brain. In this paper, three-dimensional computational fluid dynamics of the main CoW vasculature coupled with zero-dimensional lumped parameter model boundary condition for the CoW outflow boundaries is developed for analysis of the blood flow distribution in the incomplete CoW cerebral arterial structures. The geometric models in our study cover the arterial segments from the aorta to the cerebral arteries, which can allow us to take into account the innate patient-specific resistance of the arterial trees. Numerical simulations of the governing fluid mechanics are performed to determine the CoW arterial structural hemodynamics, for illustrating the redistribution of the blood flow in CoW due to the structural variations. We have evaluated our coupling methodology in five patient-specific cases that were diagnosed with the absence of efferent vessels or impairment in the connective arteries in their CoWs. The velocity profiles calculated by our approach in the segments of the patient-specific arterial structures are found to be very close to the Doppler ultrasound measurements. The accuracy and consistency of our hemodynamic results have been improved (to \(16.1 \pm 18.5\) %) compared to that of the pure-resistance boundary conditions (of 43.5 \(\pm \) 28 %). Based on our grouping of the five cases according to the occurrence of unilateral occlusion in vertebral arteries, the inter-comparison has shown that (i) the flow reduction in posterior cerebral arteries is the consequence of the unilateral vertebral arterial occlusion, and (ii) the flow rate in the anterior cerebral arteries is correlated with the posterior structural variations. This study shows that our coupling approach is capable of providing comprehensive information of the hemodynamic alterations in the pathological CoW arterial structures. The information generated by our methodology can enable evaluation of both the functional and structural status of the clinically significant symptoms, for assisting the treatment decision-making.  相似文献   

11.
Renal function, the anatomic and functional status of the vena cava inferior, renal arteries and veins, and spermatic veins were evaluated in healthy individuals and patients with varicocele before and 12 months after laparoscopic ligation of the left spermatic vein. The renal vessels were assessed by color Doppler ultrasonography and renal function was examined by complex radionuclide study with 99mTc-pentatech. There were no significant changes in the diameter of renal arteries and vena cava inferior and the right arterial blood flow velocities in healthy individuals and patients. No difference were found in the diameter of renal veins and in the blood flow velocity in renal arteries and veins. The enlarged renal veins and decreased mean blood flow velocity in the left renal vein in healthy persons and patients with varicocele and lower blood flow in the left renal artery than in the right one indicate left-sided renal hypertension that is attributable to left renal vein overload due to a great variety of collaterals and to compression at the site of "a forcepts". At the same time 12-month postoperative ultrasonic, Doppler and complex radionuclide studies revealed no significant changes in the diameter and blood flow velocity in the left renal vein.  相似文献   

12.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

13.
In experiments with the constant blood flow perfusion of the cat calf muscle and combined actions of adrenalin and noradrenaline were tested as to the blood flow resistance changes of the arterial and venous blood vessels. Separately applied the catecholamines evoked vascular resistance changes practically similar in value; combined effects of catecholamines realized in greater increase of arterial than venous resistance. In contrast to arterial vessels supramaximal stimuli resulted in much lesser constrictive effect as compared with reaction of intramural veins to separately applied catecholamines. Greater doses of catecholamines being combined, stability of effector system of skeletal muscle veins is decreased as compared to arteries.  相似文献   

14.
15.
Vascular duplex ultrasound study with simultaneous ECG recording was performed to estimate the timing parameters of blood flow in the common carotid, internal carotid, and middle cerebral arteries in patients with grades 1 and 2 arterial hypertension. There was an increase in the blood flow acceleration phase index in the common carotid and middle cerebral arteries and a reduction in the systolic phase index in the internal carotid arteries. There were correlations of phasic blood flow parameters in the extra- and intracranial arteries with age and lipidogram readings.  相似文献   

16.
The arteries and veins of the heart of the beluga whale (Delphinapterus leucas) are described from the dissection of nine specimens. The arterial distribution is composed of the basic mammalian pattern of two major vessels, the left and right coronary arteries, which supply the cardiac tissue. The venous drainage is provided by three major systems which are the great, middle, and small cardiac veins. The vascular characteristics of the heart of the beluga whale are the marked sinuosity of both coronary arteries and their main branches, the numerous large interarterial anastomoses between major vessels, and the duplication of vessels in parallel branches. These characteristics are discussed in functional terms and correlated with the diving ability of the species.  相似文献   

17.
Summary The topographical distribution of the blood vessels in the bed nucleus of the stria terminalis (NIST) has been mapped in rats. Arteries and veins were visualized in red and blue by using a double-ink perfusion technique. Arteries supplying the NIST arise from the anterior cerebral artery directly or through the anterior communicating and interhemispheric arteries. Only a few, dorsal branches derive from the medial cerebral artery through thalamostriatal arteries. According to their terminal branches, NIST arteries can be divided into five groups: medial, ventral, lateral, septal and dorsal, which have only a relatively small overlap in their territories. About 90% of veins from the NIST drain into the major basal veins. Medial branches run into the perioptic and interhemispheric veins, while the ventral branches and the large lateral vein drain directly into the anterior cerebral vein. A small proportion of NIST veins run dorsalward into the vena cerebri magna via thalamostriatal veins.  相似文献   

18.
One-dimensional (1D) simulation of the complete vascular network, so called THINkS (Total Human Intravascular Network Simulation) is developed to investigate changes of blood flow characteristics caused by the variation of CoW. THINkS contains 158 major veins, 85 major arteries, and 77 venous and 43 arterial junctions. THINkS is validated with available in vivo blood flow waveform data. The overall trends of flow rates in variations of the CoW, such as the missing anterior cerebral artery (missing-A1) or missing posterior cerebral artery (missing-P1), are confirmed by in vivo experimental data. It is demonstrated that the CoW has the ability to shunt blood flow to different areas in the brain. Flow rates in efferent arteries remain unaffected under the variation of CoW, while the flow rates in afferent vessels can be subject to substantial changes. The redistribution of blood flow can cause particular vessels to undergo extra flow rate and hemodynamic stresses.  相似文献   

19.
The arterial and venous systems of the rat's septum pellucidum has been studied by means of the perfusion technique. The arteries may be classified into three groups. The branches of each of the three groups originate from the a. hemispherica and enter the septum from the frontal direction. The veins may be divided into an anterior and a posterior group. The anterior veins flow through the v. subcallosa into the sinus cavernosus, the posterior veins into v. cerebri magna. The arterial and venous blood supply of the individual nuclei of the septum are compar independent.  相似文献   

20.
Possible relationships between the density of peptide innervation and the contractile response of rat cerebral arteries to exogenously applied neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) were examined. The effects of NPY on membrane potential and reactivity of cerebral arteries to exogenous norepinephrine also were studied. In normally innervated arteries there was no apparent correlation between degree of innervation and response to NPY. Marked, prolonged tachyphylaxis to NPY and VIP was observed following brief exposure to these peptides. Surgical removal of the superior cervical ganglia or the sphenopalatine ganglia greatly reduced and, in some cases, eliminated NPY- or VIP-immunoreactive perivascular nerves from cerebral arteries. However, responses of denervated middle cerebral arteries to exogenous NPY or VIP were not different from responses of innervated arteries. Doses of NPY that induced maximal contraction caused no change in membrane potential of the middle cerebral artery. NPY also did not alter the response of cerebral arteries to exogenous norepinephrine. Finally, electrical stimulation of normal or denervated arteries caused only minor constrictor or dilator responses. These results do not support a substantial role for peptidergic perivascular nerves in regulation of pial arterial contractility in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号