首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

2.
Myosin was isolated from extracts of a clonal cell line of pheochromocytoma (PC12) cells by ammonium sulfate fractionation and gel filtration. This myosin consisted of heavy chains and two light chains (20 and 17 kDa). The 20 kDa light chain could be phosphorylated by a protein kinase which was also present in the extracts and which eluted after myosin from the gel filtration column. Myosin phosphorylation was partly inhibited by EGTA and by the calmodulin-inhibiting drug trifluoperazine. The Mg2+-ATPase of phosphorylated myosin, but not of unphosphorylated myosin, was activated by skeletal muscle actin. Ca2+ did not affect the Mg2+-ATPase activity of either myosin preparation at low ionic strength. The phosphorylation of myosin may activate a contractile mechanism controlling the Ca2+-dependent secretion of norepinephrine from the cells.  相似文献   

3.
Regulation of protein kinase activities in PC12 pheochromocytoma cells.   总被引:22,自引:0,他引:22  
Stimulation of serine protein kinase activity (referred to as S6 kinase) occurs within minutes of addition of nerve growth factor (NGF) to PC12 rat pheochromocytoma cells. This enzyme activity is not related to the cAMP-dependent protein kinase (protein kinase A) or the Ca2+- and phospholipid-dependent protein kinase (protein kinase C), two other protein kinases potentially involved in signal transduction. Two peaks of NGF-stimulated S6 phosphotransferase activity are observed upon ion exchange chromatography; one that comigrates with the serine kinase previously described in chicken embryo fibroblasts and another with distinct elution properties. Several other factors are also found to regulate S6 phosphotransferase activity in PC12 cells including epidermal growth factor, insulin, and phorbol myristate acetate. Dibutyryl cAMP stimulates S6 phosphotransferase activity; however, this activity is strongly inhibited by the protein kinase A heat stable inhibitor. At least two mechanisms exist through which the NGF-stimulated S6 kinase activity can be regulated, one that apparently can use protein kinase C whereas the other(s) does not. The potential roles of these protein kinase activities in signal transduction and regulation of cell growth and differentiation is discussed.  相似文献   

4.
A class of inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2) was discovered. These compounds have demonstrated activity against the enzyme with IC50 values as low as 130 nM and suppress the expression of TNFalpha in U937 cells. These represent the first small molecule inhibitors of MK-2 to be reported.  相似文献   

5.
Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity.  相似文献   

6.
The stress hormone epinephrine is known to elicit multiple systemic effects that include changes in cardiovascular parameters and immune responses. However, information about its direct action on cancer cells is limited. Here we provide evidence that epinephrine reduces sensitivity of cancer cells to apoptosis through interaction with beta(2)-adrenergic receptors. The antiapoptotic mechanism of epinephrine primarily involves phosphorylation and inactivation of the proapoptotic protein BAD by cAMP-dependent protein kinase. Moreover, BAD phosphorylation was observed at epinephrine concentrations found after acute and chronic psychosocial stress. Antiapoptotic signaling by epinephrine could be one of the mechanisms by which stress promotes tumorigenesis and decreases the efficacy of anti-cancer therapies.  相似文献   

7.
Fujita N  Kakimi M  Ikeda Y  Hiramoto T  Suzuki K 《Life sciences》2000,66(19):1849-1859
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explored the effects of extracellular ATP on starvation-induced apoptosis in rat pheochromocytoma PC12 cells. Incubation of differentiated PC12 cells with ATP for 6h suppressed apoptosis. 2-Methylthio-ATP, a P2 purinoceptor agonist, was as potent as ATP in suppressing apoptosis, whereas adenosine, ADP, alpha,betamethylene-ATP or UTP was totally ineffective. The suppressive action of ATP was dependent upon the presence of extracellular Ca2+ and blocked by co-incubation with the P2 antagonist, suramin. DNA ladder formation, a typical symptom of apoptosis in starved cells, was inhibited by ATP, 2-methylthio-ATP but not by UTP. These results suggest that the inhibitory action of extracellular ATP on apoptotic cell death is mediated via the activation of P2X2 receptors in differentiated PC12 cells.  相似文献   

8.
We have investigated mechanisms of nicotine-induced phosphorylation of extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and cAMP response element binding protein (CREB) in PC12h cells. Nicotine transiently induced ERK phosphorylation at more than 1 microM. The maximal level of nicotine-induced ERK phosphorylation was lower than that of the membrane depolarization induced and, to a great extent, the nerve growth factor (NGF)-induced ERK phosphorylation. Nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitors had no significant effect on nicotine-induced ERK phosphorylation. L-Type voltage-sensitive calcium channel antagonists inhibited nicotine-induced ERK phosphorylation. Calcium imaging experiments showed that alpha7-containing nAChR subtypes were functional at 1 microM of nicotine in the nicotine-induced calcium influx, and non-alpha7 nAChRs were prominent in the Ca(2+) influx at 50 microM of nicotine. An expression of dominant inhibitory Ras inhibited nicotine-induced ERK phosphorylation. A calmodulin antagonist, a CaM kinase inhibitor, a MAP kinase kinase inhibitor inhibited nicotine-induced ERK and CREB phosphorylation. The time course of the phosphorylation of CREB induced by nicotine was similar to that of ERK induced by nicotine. These results suggest that non-alpha7 nAChRs are involved in nicotine-induced ERK phosphorylation through CaM kinase and the Ras-MAP kinase cascade and most of the nicotine-induced CREB phosphorylation is mediated by the ERK phosphorylation in PC12h cells.  相似文献   

9.
The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on human lung cancer cell line NCI-1299 mitogen activated protein kinase (MAPK) tyrosine phosphorylation and vascular endothelial cell growth factor (VEGF) expression were investigated. PACAP-27 (100 nM) increased MAPK tyrosine phosphorylation 3-fold, 5 min after addition to NCI-H1299 cells. PACAP caused tyrosine phosphorylation in a concentration-dependent manner being half-maximal at 10 nM PACAP-27. PACAP-27 or PACAP-38 (100 nM) but not PACAP28-38 or VIP caused increased MAPK tyrosine phosphorylation using NCI-H1299 cells. Also, the increase in MAPK tyrosine phosphorylation caused by PACAP-27 was totally inhibited by 10 microM PACAP(6-38), a PAC(1) receptor antagonist or 10 microM PD98059, a MAPKK inhibitor. These results suggest that PAC(1) receptors regulate tyrosine phosphorylation of MAPK in a MAPKK-dependent manner. PACAP-27 (100 nM) caused increased VEGF mRNA in NCI-H1299 cells after 8 h. The increase in VEGF mRNA caused by PACAP-27 was partially inhibited by PACAP(6-38), PD98059 and H-89. Addition of VIP to NCI-H1299 cells caused increased VEGF mRNA, which was totally inhibited by H89, a PKA inhibitor. These results suggest that PAC(1) and VPAC(1) receptors regulate VEGF expression in lung cancer cells.  相似文献   

10.
Cytochrome P450 2E1 (CYP2E1) is highly inducible in a subset of astrocytes in vivo following ischemic or mechanical injury and in vitro by lipopolysaccharide or interleukin-1beta. In the present study, phorbol-12,13-dibutyrate (PDBu) was found to induce catalytically active CYP2E1 more than fourfold in cortical glial cultures. Little induction was seen up to 12 h, and full effects only at 21-24 h of PDBu treatment. CYP2E1 expression in PDBu-treated cells was enriched in a subset of astrocytes. The protein kinase C inhibitors, staurosporine and calphostin C, and the tyrosine kinase inhibitor genistein, but not its inactive analogue daidzein, prevented the induction of CYP2E1 by PDBu. It is suggested that CYP2E1, together with interleukin-6 and ciliary neurotrophic factor, is part of a response of astrocytes to cellular stress elicited by, e.g. cerebral injury, cytokines or phorbol ester, and mediated in part through protein kinase C.  相似文献   

11.
The activity of alpha-galactosyltransferase in cultured rat pheochromocytoma subcloned (PC12h) cells was examined using Gb3 as the acceptor for the galactose from UDP-galactose. The major reaction product was identified as gal alpha 1-3Gb3 based on its mobility on thin-layer chromatographic (TLC) plates and susceptibility to specific galactosidases. The enzyme activity in PC12h cells was the highest at pH 7.0 while the presence of Triton CF-54 (0.1%) and Mn2+ (5 mM) was required for its full activity. The apparent Km values for Gb3 and UDP-galactose were 57 and 17 microM, respectively. The enzyme activity in PC12h cells was compared with that in parent PC12 cells, in which gal alpha 1-3Gb3 is not expressed in an appreciable amount. In the enzyme reaction with exogenous Gb3, the enzyme activity in PC12h cells was about 1.5-fold higher than that in PC12 cells. In the absence of exogenous Gb3, this difference became even more pronounced; gal alpha 1-3Gb3 was generated from endogenous Gb3 at a much higher rate in PC12h cells than in PC12 cells. These findings suggest that the higher level of the alpha-galactosyltransferase activity in PC12h cells may, at least in part, be responsible for the accumulation of unique neutral glycosphingolipids having gal alpha 1-3 terminal residues in the cells.  相似文献   

12.
The biosynthesis and secretion of dopamine beta-hydroxylase were investigated by radiolabeling rat pheochromocytoma (PC12) cells in culture. Intracellular dopamine beta-hydroxylase from a crude chromaffin vesicle fraction and secreted dopamine beta-hydroxylase from culture medium were immunoprecipitated using antiserum made against purified bovine soluble dopamine beta-hydroxylase. Analysis of the immunoprecipitated enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that: 1) the membrane-bound form of the hydroxylase from crude secretory vesicle membrane extracts contained two nonidentical subunits in approximately stoichiometric amounts (Mr = 77,000 and 73,000); 2) the soluble hydroxylase from the lysate of these secretory vesicles was composed predominantly of a single subunit (Mr = 73,000); and 3) the hydroxylase secreted into the medium under resting conditions was also composed of a single subunit (approximate Mr = 73,000). All subunits of the multiple forms of hydroxylase were glycoproteins. Under resting conditions, the rate of secretion of hydroxylase was approximately 6% of total cellular enzyme/15 min. The secreted form of the hydroxylase incorporated [35S]sulfate, whereas no significant [35S]sulfate was incorporated into the cellular forms of enzyme. We propose that in addition to the dopamine beta-hydroxylase which is found in catecholamine storage vesicles and released during stimulus-coupled exocytosis, PC12 cells also have a constitutive secretory pathway for dopamine beta-hydroxylase and that the enzyme released by this second pathway is sulfated.  相似文献   

13.
Previous studies have shown that certain glycosphingolipids may function as modulators of protein kinase C (PKC) activity. To study the structure-activity relationship, we examined the effects of 17 gangliosides, 10 neutral glycolipids, as well as sulfatide, psychosine and ceramide on PKC activity in PC12D cells. Using an in vitro assay system, we found that all but one (GQ1b) ganglioside inhibited PKC activity at concentrations between 25 and 100 µM, and the potency was proportional to the number of sialic acid residues. However, at lower concentrations several gangliosides, including GM1 and LM1 behaved as mild activators of PKC activity. GQ1b had no effect within the range 0.1–10 µM, but acted as a mild activator of PKC activity at 25 µM. On the other hand, fucosyl-GM1 and GM1 containing blood group B determinant, which are abundant in PC12 cells, were potent inhibitors of PKC activity. Among the neutral glycosphingolipids tested, LacCer, Gb3, GalGb3, and GA1, all of which have a terminal galactose residue, were found to be ineffective or acted as mild activators of PKC activity. In contrast, GA2, Gb4 and Gb5 which have a terminal N-acetylgalactosamine residue, were potent inhibitors of the PKC activity. Thus, the terminal sugar residue may play a pivotal role in determining the effect of glycosphingolipids in modulating PKC activity. In addition, we also found that GalCer containing normal fatty acids acted as potent activators of PKC activity. Ceramide and GlcCer appeared to be ineffective in modulating PKC activity, whereas psychosine and sulfatides appeared to be inhibitory. We conclude that the carbohydrate head groups and the hydrophobic groups of gangliosides and neutral glycolipids may modulate the PKC system in unique manners, which may in turn affect various biological processes in the cell.  相似文献   

14.
A significant increase in plasma glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase was observed 6 h after intraperitoneal administration of D-galactosamine (D-Galn). Three hours after administration of D-Galn, the vitamin C concentration in the liver decreased significantly compared to that in a control group and thereafter the hepatic vitamin C concentration remained at a significantly lower level. Phosphorylated JNK (c-Jun NH2-terminal kinase) and phosphorylated ERK (extracellular signal-regulated kinase) started increasing 3 h after D-Galn treatment and remained at a high level for 6-12 h after the treatment, while phosphorylated p38 MAPK increased significantly 6 h after D-Galn administration. These results indicated that oxidative stress and the activation of JNK and ERK took place almost simultaneously, followed by the activation of p38 MAPK.  相似文献   

15.
A novel series of inhibitors for mitogen activated protein kinase-activated protein kinase 2 (MK-2) are reported. These squarate based inhibitors were identified via a high-throughput screen. An MK2 co-structure with the starting ligand was obtained and a structure based approach was followed to optimize potency and selectivity.  相似文献   

16.
A class of inhibitors of mitogen activated protein kinase-activated kinase 2 (MK2) was discovered via high-throughput screening. This compound class demonstrates activity against the enzyme with sub-μM IC50 values, and suppresses LPS-induced TNFα levels in THP-1 cells. MK2 inhibition kinetic measurements indicated mixed binding approaching non-ATP competitive inhibition.  相似文献   

17.
The aim of the present study was to analyse the alterations of cyclin dependent kinase 5 (Cdk5) expression and phosphorylation in PC12 cells overexpressing amyloid precursor protein (APP). Our results demonstrated enhanced cell death and increased levels of mRNA for the Cdk5 gene in APP-transfected cells. Significantly decreased phosphorylation of Cdk5 at Tyr15 was observed in APPsw cells, which is responsible for a reduction in Cdk5 activity. Cdk5-dependent phosphorylation of glycogen synthase kinase-3β (Gsk-3β) at Ser9 was also decreased, which can lead to the increase of Gsk-3β activity and hyperphosphorylation of MAP tau. Our results demonstrate for the first time, a deregulation of Cdk5 phosphorylation in APP-transfected cells.  相似文献   

18.
Clonal PC12 rat pheochromocytoma cells were sequentially incubated with 125I-labeled nerve growth factor and the photoreactive bifunctional agent hydroxysuccinimidyl-p-azidobenzoate. This treatment effected the crosslinking of 125I nerve growth factor to a PC12 cell component that exhibits an apparent Mr = 148 000-158 000, and consists of a single polypeptide chain with internal disulfide bonds. The amount of label associated with this Mr = 148 000-158 000 species was proportional to the degree of occupancy of nerve growth factor receptors by 125I-labeled nerve growth factor. Affinity labeling of this species was inhibited by the presence of 0.2 microM unlabeled nerve growth factor during incubation of PC12 cells with 125I nerve growth factor. In membranes prepared from PC12 cells hydroxysuccinimidyl-p-azidobenzoate effected the crosslinking of 125I-labeled nerve growth factor to an Mr = 120 000-130 000 species but not to the Mr = 148 000-158 000 component observed in intact cells. The kinetics of 125I nerve growth factor affinity labeling of the Mr = 148 000-158 000 species closely paralleled the time-course of 125I nerve growth factor association to two kinetically distinct forms of nerve growth factor receptors in PC12 cells. The data indicate that the Mr = 148 000-158 000 species affinity-labeled by 125I nerve growth factor is the native form of a component associated with kinetically different nerve growth factor receptors in PC12 cells.  相似文献   

19.
We have studied morphological differentiation and ion channel expression in PC12 cells under different culture conditions. Differentiation mediated by nerve growth factor (NGF) was compared with that induced by depletion and inhibition of protein kinases (phorbol ester beta-PMA plus staurosporine). Morphological differentiation was similar under both conditions. However, ion channel densities, studied by means of the patch-clamp technique, were enhanced by NGF and reduced by beta-PMA+staurosporine. Similar changes were also observed for omega-conotoxin-sensitive Ca2+ channels by measuring radioligand binding. The decrease in Ca2+ channel density, after treatment of the cells with beta-PMA+staurosporine, resulted in a reduced increase in the intracellular Ca2+ concentration during K+ depolarization. We conclude that morphological differentiation, but not ion channel expression, can occur during depression of protein kinase activities in PC12 cells.  相似文献   

20.
Jang JH  Surh YJ 《Mutation research》2001,496(1-2):181-190
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities. One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), one of the major antioxidative constituents found in the skin of grapes, has been considered to be responsible in part for the protective effects of red wine consumption against coronary heart disease ('French Pardox'). In this study, we have investigated the effects of resveratrol on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death as determined by characteristic morphological features, internucleosomal DNA fragmentation and positive in situ end-labeling by terminal transferase (TUNEL staining). Resveratrol pretreatment attenuated hydrogen peroxide-induced cytotoxicity, DNA fragmentation, and intracellular accumulation of ROS. Hydrogen peroxide transiently induced activation of NF-kappaB in PC12 cells, which was mitigated by resveratrol pretreatment. These results suggest that resveratrol has the potential to prevent oxidative stress-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号