首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human amniotic membrane (hAM) has been successfully used as a natural carrier containing amniotic mesenchymal stromal cells, epithelial cells and growth factors. It has a little or no immunogenicity, and possesses useful anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. It has been used for many years in several indications for soft tissue repair. We previously reported that hAM represents a natural and preformed sheet containing highly potent stem cells, and could thus be used for bone repair. Indeed, native hAM possesses pre-osteoblastic potential that can easily be stimulated, even as far as mineralization, by means of in vitro osteogenic culture. However, cell culture induces damage to the tissue, as well as to cell phenotype and function. The aim of this study was to evaluate new bone formation by fresh and in vitro osteodifferentiated hAM, alone or associated with an additional scaffold presenting osteoinductive properties. Moreover, we also aimed to determine the effect of in vitro hAM pre-osteodifferentiation on its in vivo biocompatibility/tissue degradation. Results showed that neither fresh nor osteodifferentiated hAM induced ectopic bone formation, whether or not it was associated with the osteoinductive scaffold. Secondly, fresh and osteodifferentiated hAM presented similar in vivo tissue degradation, suggesting that in vitro hAM pre-osteodifferentiation did not influence its in vivo biocompatibility.  相似文献   

2.
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.  相似文献   

3.
The human amniotic membrane (hAM), thanks to its favorable properties, including anti-inflammatory, anti-fibrotic and pro-regenerative effects, is a well-known surgical material for many clinical applications, when used both freshly after isolation and after preservation. We have shown previously that hAM patching is a potential approach to counteract liver fibrosis. Indeed, when fresh hAM was used to cover the liver surface of rats with liver fibrosis induced by the bile duct ligation (BDL) procedure, the progression and severity of fibrosis were significantly reduced. Since cryopreservation enables safety and long-term storage of hAM but may influence its functional properties, here we compared the anti-fibrotic effects of fresh and cryopreserved hAM in rats with BDL-induced liver fibrosis. After BDL, the rat liver was covered with a piece of fresh or cryopreserved hAM, or left untreated. Six weeks later, the degree of liver fibrosis was assessed histologically using the Knodell and the METAVIR scoring systems. Digital image analysis was used to quantify the percentage of the areas of each liver section displaying ductular reaction, extracellular matrix (ECM) deposition, activated myofibroblasts and hepatic stellate cells (HSCs). Liver collagen content was also determined by spectrophotometric technique. The degree of liver fibrosis, ductular reaction, ECM deposition, and the number of activated myofibroblasts and HSCs were all significantly reduced in hAM-treated rats compared to control animals. Fresh and cryopreserved hAM produced the same anti-fibrotic effects. These findings indicate that cryopreservation maintains the anti-fibrotic properties of hAM when used as a patch to reduce the severity of liver fibrosis.  相似文献   

4.
The tissue cryopreservation maintains the cellular metabolism in a quiescence state and makes the conservation possible for an indefinite period of time. The choice of an appropriate cryopreservation protocol is essential for maintenance of cryopreserved tissue banks. This study evaluated 10 samples of umbilical cord, from which small fragments of tissue (Wharton’s jelly and cord lining membrane) were subjected to two protocols of cryopreservation: slow cooling and vitrification. The samples were frozen for a period of time ranging from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, histological analysis, cell culture, cytogenetic analysis and comparison with the results of the fresh samples. The results showed that the slow cooling protocol was more efficient than the vitrification for cryopreservation of umbilical cord tissue, because it has caused fewer changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the significant decrease cell viability compared to fresh samples, the ability of cell proliferation in vitro was preserved in most samples. In conclusion, this study showed that it is possible to cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue bank.  相似文献   

5.
Human amniotic membrane (hAM) represents a tissue that is well established as biomaterial in the clinics with potential for new applications in regenerative medicine. For tissue engineering (TE) strategies, cells are usually combined with inductive factors and a carrier substrate. We have previously recognized that hAM represents a natural, preformed sheet including highly potent stem cells. In the present approach for cartilage regeneration we have induced chondrogenesis in hAM in vitro. For this, hAM biopsies were cultured for up to 56 days under chondrogenic conditions. The induced hAM was characterized for remaining viability, glycosaminoglycan (GAG) accumulation using histochemical analysis, and a quantitative assay. Collagen I, II and X was immunohistochemically determined and cartilage-specific mRNA expression of (sex determining region Y-) box 9, cartilage oligomeric matrix protein (COMP), aggrecan (AGC1), versican (CSPG2), COL1A1, COL9A2, melanoma inhibitory activity (MIA), and cartilage-linking protein 1 (CRTL1) analyzed by quantitative real-time polymerase chain reaction. Human AM was successfully induced to accumulate GAG, as demonstrated by Alcianblue staining and a significant (p < 0.001) increase of GAG/viability under chondrogenic conditions peaking in a 29.9 ± 0.9-fold induction on day 56. Further, upon chondrogenic induction collagen II positive areas were identified within histological sections and cartilage-specific markers including COMP, AGC1, CSPG2, COL1A1, COL9A2, MIA, and CRTL1 were found upregulated at mRNA level. This is the first study, demonstrating that upon in vitro induction viable human amnion expresses cartilage-specific markers and accumulates GAGs within the biomatrix. This is a promising first step towards a potential use of living hAM for cartilage TE.  相似文献   

6.
Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14–15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.  相似文献   

7.
Cryopreservation of tissue engineered products by maintaining their structure and function is a prerequisite for large-scale clinical applications. In this study, we examined the feasibility of cryopreservation of tissue engineered bone (TEB) composed of osteo-induced canine bone marrow mesenchymal stem cells (cBMSCs) and partially demineralized bone matrix (pDBM) scaffold by vitrification. A novel vitreous solution named as VS442 containing 40% dimethyl-sulfoxide (DMSO), 40% EuroCollins (EC) solution and 20% basic culture medium (BCM) was developed. After being cultured in vitro for 8 days, cell/scaffold complex in VS442 was subjected to vitreous preservation for 7 days and 3 months, respectively. Cell viability, proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons being made with those cryopreserved in VS55 vitreous solution. Compared with that cryopreserved in VS55, cell viability and subsequent proliferative ability of TEB in VS442 after being rewarmed were significantly higher as detected by live/dead staining and DNA assay. The level of alkaline phosphatase (ALP) expression and osteocalcin (OCN) deposition in VS442 preserved TEB was also higher than those in the VS55 group since 3 days post-rewarm. Both cell viability and osteogenic capability of the VS55 group were found to be declined to a negligible level within 15 days post-rewarm. Furthermore, it was observed that extending the preservation of TEB in VS442 to 3 months did not render any significant effect on its survival and osteogenic potential. Thus, the newly developed VS442 vitreous solution was demonstrated to be more efficient in maintaining cellular viability and osteogenic function for vitreous cryopreservation of TEB over VS55.  相似文献   

8.
A method for cryopreserving a 100-microm-thick sheet of tissue produced by cultured rabbit chondrocytes has been developed. The method maintains cell viability and avoids tissue fracture and degradation of mechanical properties. A slow-freeze, fast-thaw procedure with 2 M Me(2)SO as the cryoprotectant resulted in no tissue fracture and approximately 90% viable cells after storage in culture flasks at -80 degrees C. The cells in the retrieved tissue remained responsive to IL-1beta, and tensile and fracture toughness properties of the tissue were not degraded by cryopreservation.  相似文献   

9.
The field of stem-cell biology has emerged as a key technology for the treatment of various disorders and tissue regeneration applications. However, a major problem remains in clinical practice, which is the question of whether stem cells preserve their self-renewal and differentiation potential in the culture conditions or not. In the current study, effects of boron on the cryopreservation of human tooth germ stem cells (hTGSCs) were evaluated for the first time. The impacts of various boron concentrations (sodium pentaborate pentahydrate (NaB)) were tested on characterized hTGSCs viability for different time intervals (24, 48, and 72 h). 20 μg/ml NaB with lower Me2SO concentration was found to display positive effects on hTGSCs during repeated freezing and defrosting cycles, and long-term cryopreservation. After thawing, cells were analyzed for their surface antigens and differentiation capacity. hTGSCs were successfully cryopreserved without any change in their mesenchymal stem cell characteristics as they were treated with boron containing freezing medium. In addition, fatty acid composition was examined to demonstrate membrane fatty acid profiles after freeze-thawing. Besides, NaB treatment extended osteogenic and chondrogenic differentiation of hTGSCs remarkably after long-term cryopreservation with respect to control groups. The study clearly suggests that NaB has a protective role on the survival of hTGSCs in short- and long-term cryopreservation. Due to the possible storage of hTGSCs at early ages, development of a functional and reliable cryopreservation media can be designed as a future solution to the dental stem cell banking.  相似文献   

10.
《Cytotherapy》2020,22(10):581-591
Background aimsUmbilical cord (UC) tissue is recognized as an advantageous source of mesenchymal stromal cells (MSCs), whose therapeutic properties are being actively evaluated in pre-clinical and clinical trials. In recognition of its potential value, storage of UC tissue or cells from UC tissue in newborn stem cell banks is now commonplace; however, strategies for isolating UC-derived MSCs (UCMSCs) from UC tissue have not been standardized. The majority of newborn stem cell banks take one of two approaches to cord tissue processing and cryopreservation: enzymatic digestion of the fresh tissue with cryopreservation of the subsequent cell suspension or cryopreservation of the tissue as a composite whole with later, post-thaw isolation of cells by explantation. Evaluation of UCMSCs derived by these two principal preparation and cryopreservation strategies is important to understanding whether the methods currently employed by newborn stem cell banks retain the desirable clinical attributes of UC cells.MethodsUCMSCs were isolated from 10 UC tissue samples by both explantation and enzymatic digestion methods to allow for comparison of cells from the same donor. Cell isolates from both methods were compared pre- and post-cryopreservation as well as after serial passaging. Cell viability, morphology, growth kinetics, immunophenotype, cytokine secretion and differentiation capacity were evaluated.ResultsUCMSCs could be derived from fresh UC tissue by both explantation and digestion methods and from thawed UC tissue by explantation. Initial cell populations isolated by digestion were heterogeneous and took longer to enrich for UCMSCs in culture than populations obtained by explantation. However, once isolated and enriched, UCMSCs obtained by either method showed no significant difference in viability, morphology, rate of proliferation, surface marker expression, levels of cytokine secretion or differentiation capacity.ConclusionsDerivation of UCMSCs by explantation after thawing UC cryopreserved as a composite tissue may be favorable in terms of initial purity and number of cells achievable by a specific passage. However, we observed no evidence of functional difference between UCMSCs derived by explanation or digestion, suggesting that cells isolated from cryopreserved material obtained by either method maintain their therapeutic properties.  相似文献   

11.
Atrial fibrosis has been implicated in the development and maintenance of atrial arrhythmias, and is characterized by expansion of the extracellular matrix and an increased number of fibroblasts (Fbs). Electrotonic coupling between atrial myocytes and Fbs may contribute to the formation of an arrhythmogenic substrate. However, the role of these cell-cell interactions in the function of both normal and diseased atria remains poorly understood. The goal of this study was to gain mechanistic insight into the role of electrotonic Fb-myocyte coupling on myocyte excitability and repolarization. To represent the system, a human atrial myocyte (hAM) coupled to a variable number of Fbs, we employed a new ionic model of the hAM, and a variety of membrane representations for atrial Fbs. Simulations elucidated the effects of altering the intercellular coupling conductance, electrophysiological Fb properties, and stimulation rate on the myocyte action potential. The results demonstrate that the myocyte resting potential and action potential waveform are modulated strongly by the properties and number of coupled Fbs, the degree of coupling, and the pacing frequency. Our model provides mechanistic insight into the consequences of heterologous cell coupling on hAM electrophysiology, and can be extended to evaluate these implications at both tissue and organ levels.  相似文献   

12.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120 h after tooth extraction, and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC, ending with development of procedures for banking. First, we aimed to optimize cryopreservation of established DPSC cultures, with regards to optimizing the cryoprotective agent (CPA), the CPA concentration, the concentration of cells frozen, and storage temperatures. Secondly, we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly, we evaluated the growth, surface markers and differentiation properties of DPSC obtained from intact teeth and undigested, whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me2SO at a concentration between 1 and 1.5 M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen, at least up to 2 × 106 cells/mL. It was further established that DPSC can be stored at −85 °C or −196 °C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues, with digestion and culture performed post-thaw. A recovery of cells from >85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free, defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions.  相似文献   

14.
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.  相似文献   

15.
Summary Recently, it was demonstrated that the application of slow-cooling cryopreservation protocols to adherent human embryonic stem (hES) cell colonies, cultured on matrigel or murine embryonic fibroblast feeder layers, resulted in marked improvement in postthaw viability and reduction in cell differentiation. However, the use of commercially available culture plates for this purpose presents several limitations. Most obviously, these plates are not designed for cryopreservation or to withstand the low temperatures encountered during liquid nitrogen cryopreservation, or both. The physical storage of cryopreserved plates is another consideration, in addition to difficulty in maintaining sterile conditions in liquid nitrogen storage and during the thaw phase in a water bath. Hence, a redesign of the cell culture plate for the cryopreservation of adherent hES cell colonies is proposed. In this model, a culture plate made of synthetic materials resistant to storage at −196° C of liquid nitrogen is designed, with readily attachable screw-cap culture wells that function as a replacement for cryovial storage. The detachable wells facilitate storage and after thawing can easily be reattached to a specially designed holding plate. Currently, there are no commercially available cell culture plates using this design concept. The proposed design is envisioned to facilitate the cryopreservation of intact adherent hES cell colonies that could assist the development of automated systems for handling bulk quantities of cells.  相似文献   

16.
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality.  相似文献   

17.
This study determined the changes in pollen viability of 102 species/cultivars of ornamental plants (affiliated to 32 genera of 14 families) following long-term liquid nitrogen storage in a cryopreservation pollen bank. The goal was to provide information on the safety and stability of pollen cryopreservation technology. Fresh pollen at the time of storage was used as the control, and the study examined the pollen viability of ornamental plants cryopreserved for 8, 9, or 10 years. The results show that pollen of the 102 species/cultivars in the cryopreservation pollen bank retained viability ranging from 1% to 58%, After long-term storage there were changes in viability: 11.76% (12 species/cultivars) had increased viability, 16.67% (17 species/cultivars) had stable viability, and the viability of 71.57% (73 species/cultivars) showed a decreasing trend.  相似文献   

18.
J Fang  Z X Zhang 《Cryobiology》1992,29(2):267-273
Embryonic cerebral tissues (ECT) either fresh or frozen-stored, were cultured and transplanted into the cerebella of neonatal host rats. Many variables including composition of the freezing medium, freezing and thawing rates, and storage time in liquid nitrogen were studied systematically. The results indicated that the following conditions yielded good results for tissue culture: using 1 M Me2SO as the cryoprotectant, freezing the brain tissues at a rate of 1 degrees C/min until it reached -70 degrees C, storing the frozen samples in liquid nitrogen and thawing them fast in a 37 degrees C water bath. The viability of the frozen-thawed tissues was assessed by their abilities to grow and differentiate in vitro and in vivo after intracerebral grafting. In tissue culture, growth and differentiation were similar to those of the fresh ECT. Cell morphology and staining reactions were normal in supravital methylene blue staining, cresyl violet staining, and acetylcholinesterase staining. Neurons had well-developed Nissl bodies, and cholinergic neurons also differentiated. Autoradiographic studies showed that more than 50% of the neurons had the ability to uptake gamma-aminobutyric acid with high affinity. In brain tissue transplantation, 9 of 12 transplants survived subsequent grafting after cryopreservation. Moreover, the grafts of surviving cryopreserved tissue displayed cytological and cytoarchitectural characteristics identical to those of fresh grafts. All grafts were integrated with the surrounding host neural tissue. This suggested that there may be synaptic connections between the transplants and the host brain tissues. From this and similar studies on the subject by others wer conclude that cryopreservation is a feasible method for storage of embryonic brain tissue to be used later for intracerebral grafting.  相似文献   

19.
The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo‐, chondro‐, and adipo‐lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy. J. Cell. Biochem. 113: 3153–3164, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Objective Human skin allografts are used in the treatment of severe burns and their preservation is therefore critical for optimal clinical benefit. Current preservation methods, such as 4°C storage or cryopreservation, cannot prevent the decrease of tissue viability. The aim of this study was to assess viability and function of skin allografts in a new skin organ culture model, allowing conservation parameters as close as possible to physiological conditions: 32°C, air–liquid interface and physiological skin tension. Design Twelve skin samples, harvested from 6 living surgical donors, were conserved 35 days in two conditions: conservation at 4°C and organ culture. Viability and function of skin samples were investigated at Day 0, 7, 14, 21, 28 and 35 using cell culture methods (trypan blue exclusion, Colony Forming Efficiency and Growth Rate), histopathological and histoenzymological studies (Ki67 immunostaining). Results In the two conditions, fibroblast and keratinocyte viability was progressively affected by storage, with a significant decrease observed after 35 days. No statistical difference could be observed between the two conditions. The two methods were also comparable regarding alterations of fibroblast and keratinocyte culture parameters, which were respectively significantly reduced at Day 7 and 21, compared to fresh skin. By contrast, histopathological and histoenzymological studies revealed a better preservation of skin architecture and proliferative potential at 4°C, as compared to organ culture. Conclusion These results indicate that skin organ culture does not provide significant advantages for skin allograft preservation. However, its potential use as an experimental model to study skin physiology and wound healing should be further evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号