首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

2.
The effects of direct and indirect electrical stimulation on intracellular potassium and sodium contents ([K]i and [Na]i, respectively) in rat soleus muscle (SOL) and extensor digitorum longus muscle (EDL) were investigated under in vivo conditions. The changes of [K]i and [Na]i contents in both muscles which were stimulated indirectly reached respective values at 30 min or 1 hr after the beginning of stimulation, whereas those of EDL stimulated with 60 Hz changed gradually through 2 hr stimulation. The shifts of [K]i and [Na]i in EDL occurred during the twitch contraction at considerably lower frequency stimulation (0.5–10 Hz), whereas those in SOL were observed during the tetanus contraction at high frequency stimulation (10–40 Hz). The difference of change in cationic shifts between EDL and SOL under low frequency stimulation was reduced by ouabain treatment, though the difference was still significant. When the muscles were indirectly stimulated 6000 times at 1,5,10 and 20 Hz, the cationic shifts in EDL were greater than those in SOL, extending over all frequencies. It was concluded that such a difference in ionic shift between contracting EDL and SOL may be primarily due to the difference in unidirectional ionic fluxes per stimulation and, secondly, to the difference in Na+-K+ pump activity.  相似文献   

3.
In this study, conducted on mice of the C57BL/6J+/+ strain, we investigated the differential effects of denervation on the isometric contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles. The contractile properties were studied at 1, 28, 84, and 210 days following unilateral section of the sciatic nerve at 12 weeks of age. When isometric tetanus tension was expressed relative to wet weight, the denervated SOL showed an earlier and more pronounced loss in tension generating capacity than the EDL. Both the denervated SOL and EDL showed potentiation of the twitch tension at 28 days postdenervation. The time to peak twitch tension (TTP) and the time to half-relaxation (1/2RT) were prolonged by 28 days postdenervation in both muscles. This trend continued to the oldest age-groups studied in the EDL, but reached an apparent plateau in the SOL at 84 days postdenervation. In response to fatigue, the denervated SOL showed a marked decrease in resistance to fatigue at 1 day but a relatively normal response thereafter, whereas the denervated EDL showed an increase in resistance to fatigue at and beyond the 28-day period. In spite of the fact that the total contraction time of both muscles increased following denervation, the predominantly oxidative SOL remained a slower contracting muscle than the more glycolytic EDL.  相似文献   

4.
The effects of extracellular Ca2+ withdrawal were studied on isolated diaphragmatic muscle fibers and compared with the effects on the papillary, soleus, and extensor digitorum longus (EDL) contractility, using the same in vitro model. Diaphragmatic fibers were obtained from 15 rats, and papillary muscles, soleus, and EDL were obtained from 10 animals. Isometric force generated in response to 1-Hz supramaximal electrical stimulation was measured with a highly sensitive photoelectric transducer. After control measurements, perfusion with a Krebs solution depleted of calcium (0 Ca2+) was started while the fibers were continuously stimulated (4 times/min) and twitches recorded. For the papillary fibers, perfusion with zero Ca2+ was followed by an immediate decrease in twitch tension, complete twitch abolition occurring within 3 +/- 1 min after zero-Ca2+ exposure. Diaphragmatic fibers behaved similarly, although twitch abolition was delayed (10 +/- 3 min after 0-Ca2+ exposure). For the soleus fibers, the twitch amplitude amounted to 38 +/- 10% of control (62% decrease on the average) after 30 min of zero-Ca2+ exposure, no twitch abolition being noted even after 1 h of Ca2+-free exposure. The twitch amplitude of the EDL fibers amounted to 75 +/- 7% of control (25% decrease) after 30 min of zero-Ca2+ exposure. The recovery kinetics for the four fiber types after reexposure to Ca2+-containing solution were also different, with papillary and diaphragmatic fibers recovering completely within 2.5 +/- 0.5 and 4 +/- 0.5 min, respectively. By contrast, neither the soleus nor the EDL showed complete recovery after 30 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We examined the respective effects of anabolic-androgenic steroids and physical exercise on the contractile properties of regenerating fast and slow hindlimb skeletal muscles. Degeneration/regeneration of the left extensor digitorum longus muscles (EDL) and soleus of young Wistar male rats was induced by a snake venom (Notechis scutatus scutatus) injection. During muscle regeneration, experimental rats were either treated with nandrolone (NAN, nortestosterone, im, 2 mg X kg(-1) X week(-1), or endurance exercised on a treadmill (EXE, 60 min x day(-1), 10-40 m X min(-1). Twenty-one days after injury, isometric contractile properties of regenerating muscles were studied in situ. Neither the nandrolone treatment nor the physical exercise program was able to change significantly muscle contraction parameters both in twitch and tetanus in both regenerating EDL and soleus (p > 0.05). However, we observed a greater peak twitch tension in NAN versus grouped control and EXE EDL (p < 0.01). In conclusion, endurance exercise program or anabolic-androgenic steroid (nortestosterone) treatment did not significantly improve isometric contractile properties of regenerating slow and fast muscles in the male young rats.  相似文献   

6.
During the post-weaning growth and maturation period (25/90 days after birth), rat limb muscles are submitted to specific adaptations. Our aim was to characterize the mechanical properties of two muscles that are opposite in terms of fibre-type distribution, the soleus and the extensor digitorum longus (EDL) muscles of male Wistar rats. Results showed a fast-to-slow fibre-type transition in soleus while no modification in fibre-type distribution was observed in EDL. A growth-induced increase in muscle force was observed. Soleus underwent an increase in twitch kinetics, but EDL showed no modification. Resistance to fatigue was higher in 90-day-old soleus but not modified in the EDL. Surprisingly, analysis of maximal shortening velocity showed a decrease in both soleus and EDL. Finally, tension/extension curves indicated a growth-induced increase in series elastic stiffness in the two muscles. These results suggest that during this growth period, skeletal muscles are submitted to differential adaptations. Moreover, whereas adaptation of biomechanical properties observed can be explained partly by an adaptation of fibre profile in soleus, this is not the case for EDL. It is suggested that changes in muscle architecture, which are often disregarded, could explain some variations in mechanical properties, especially when muscles undergo an increase in both mass and length.  相似文献   

7.
8.
The effects of lyotropic (swelling) anions (Cl(-), Br(-), NO(3)(-) and I(-)) on contractile properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles were investigated in vitro at 20 degrees C and 35 degrees C. Isolated muscles bathed in anionic Tyrode solution were stimulated directly and isometric single twitches and fused tetanic contractions were recorded. In a Cl(-)Tyrode solution a decrease of the bathing temperature led to a cold potentiation of the twitch tension (P(t)) in EDL muscles, however, to a cold depression in SOL muscles, in both muscles combined with a prolongation of contraction (CT) and half relaxation (HRT) times. The extent and order of the potentiating effect of lyotropic anions on the P(t), CT and HRT in EDL and SOL were quite similar and increased in the order: Cl(-)< Br(-)< NO(3)(-)< I(-). Since the lyotropic anions did not influence tetanic tensions, the twitch-tetanus ratio (TTR) was increased in NO(3)(-) and I(-)solutions. All effects of the anions were rapidly and completely reversed in both muscles when the test solution was replaced by the normal one. The temperature decrease caused no significant alteration in the potentiation capacity of the anions or in the kinetics of their action and reversibility.  相似文献   

9.
The fraction of free fatty acids (FFA) is present in skeletal muscles. However, there is almost no data regarding regulation in the content of this intramuscular lipid pool. We took advantage of the isolated muscle preparation to examine whether: a) increasing exogenous concentration of FFA (500microM or 700microM, 30min) b) insulin (10.00 I.U./L, 30min), c) adrenalin (4.4 nM, 30 min), or d) contractions (200ms, tetani, 1Hz, 30min), affect the FFA content inside myocytes. Incubation of soleus (S) and extensor digitorum longus (EDL) with increasing concentrations of exogenous FFA (from 500microM to 700microM) resulted in an increase in the total FFA fraction in both muscles studied (by 280.2% and 259.1%, respectively). In contracting muscles FFA pool was significantly reduced both in S (by 73.1%) and in EDL (by 31.1%). Neither stimulation by adrenalin nor insulin affected the total content of FFA fraction in the muscles examined. We conclude that a) increased availability of exogenous FFA at the sarcolemma level results in an increase in the size of intramuscular FFA fraction b) the intracellular FFA fraction is utilized by contracting muscles with regard to the fiber composition and to a greater extent in more oxidative muscles, c) FFA fraction remains stable upon stimulation by insulin or adrenalin.  相似文献   

10.
The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.  相似文献   

11.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

12.
Isolated rat and mouse extensor digitorum longus (EDL) and soleus muscles were studied under isometric and isotonic conditions at temperatures from approximately 8 degrees -38 degrees C. The rate constant for the exponential rise of tension during an isometric tetanus had a Q10 of approximately 2.5 for all muscles (corresponding to an enthalpy of activation, delta H = 66 kJ/mol, if the rate was determined by a single chemical reaction). The half-contraction time, contraction time, and maximum rate of rise for tension in an isometric twitch and the maximum shortening velocity in an isotonic contraction all had a similar temperature dependence (i.e., delta H approximately 66 kJ/mol). The Mg++ ATPase rates of myofibrils prepared from rat EDL and soleus muscles had a steeper temperature dependence (delta H = 130 kJ/mol), but absolute rates at 20 degrees C were lower than the rate of rise of tension. This suggests that the Mg++ ATPase cycle rate is not limiting for force generation. A substantial fraction of cross-bridges may exist in a resting state that converts to the force-producing state at a rate faster than required to complete the cycle and repopulate the resting state. The temperature dependence for the rate constant of the exponential decay of tension during an isometric twitch or short tetanus (and the half-fall time of a twitch) had a break point at approximately 20 degrees C, with apparent enthalpy values of delta H = 117 kJ/mol below 20 degrees C and delta H = 70 kJ/mol above 20 degrees C. The break point and the values of delta H at high and low temperatures agree closely with published values for the delta H of the sarcoplasmic reticulum (SR) Ca++ ATPase. Thus, the temperature dependence for the relaxation rate of a twitch or a short tetanus is consistent with that for the reabsorption rate of Ca++ into the SR.  相似文献   

13.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

14.
We tested the hypothesis that positive inotropic factors decrease fatigue and improve recovery from fatigue in mammalian skeletal muscle in vitro. To induce fatigue, we stimulated mouse soleus and extensor digitorum longus (EDL) to perform isometric tetanic contractions (50 impulses x s(-1) for 0.5 s) at 6 contractions x min(-1) for 60 min in soleus and 3 contractions x min(-1) for 20 min in EDL. Muscles were submerged in Krebs-Henseleit bicarbonate solution (Krebs) at 27 degrees C gassed with 95% nitrogen - 5% carbon dioxide (anoxia). Before and for 67 min after the fatigue period, muscles contracted at 0.6 contractions x min(-1) in 95% oxygen - 5% carbon dioxide (hyperoxia). We added a permeable cAMP analog (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophosphate at 10(-3) mol x L(-1) (dcAMP)), caffeine (2 x 10(-3) mol x L(-1), or Krebs as vehicle control at 25 min before, during, or at the end of the fatigue period. In soleus and EDL, both challenges added before fatigue significantly increased developed force but only caffeine increased developed force when added during the fatigue period. At the end of fatigue, the decrease in force in challenged muscles was equal to or greater than in controls so that the force remaining was the same or less than in controls. EDL challenged with dcAMP or caffeine at any time recovered more force than controls. In soleus, caffeine improved recovery except when added before fatigue. With dcAMP added to soleus, recovery was better after challenges at 10 min and the end of the fatigue period. Thus, increased intracellular concentrations of cAMP and (or) Ca2+ did not decrease fatigue in either muscle but improved recovery from fatigue in EDL and, in some conditions, in soleus.  相似文献   

15.
THE limb muscles of mammals such as the cat and rat can be divided into the fast-twitch muscles and the slow-twitch muscles. While the absolute contraction speeds vary from species to species the isometric twitch time (the time taken from the start of contraction until the instant of peak tension development) of a slow-twitch muscle is always about three times longer than the isometric twitch time of a fast-twitch muscle. Thus, at 37° C, the isometric twitch time of cat soleus muscle (a slow-twitch muscle) is approximately 70 ms while the isometric twitch time of the flexor hallucis longus muscle (a fast-twitch muscle) is approximately 20 ms. In the rat, the contraction times of the corresponding muscles would be of the order of 36 ms and 12 ms respectively.  相似文献   

16.
Exercise-induced elevation of HSP70 is intensity dependent.   总被引:7,自引:0,他引:7  
Exercise induces expression of the protective heat shock protein, HSP70, in striated muscle. To characterize the relationship between induction of this protein and exercise intensity in muscles exhibiting different recruitment patterns, male Sprague-Dawley rats were assigned to a sedentary control or one of seven exercise groups for which treadmill running speed varied between 15 and 33 m/min (n = 8/group). Twenty-four hours after a single 60-min exercise bout, hearts, red and white portions of the vastus (RV and WV, respectively) muscles, and soleus (Sol) muscles were harvested and analyzed for both relative and absolute HSP70 content. Cardiac HSP70 was significantly elevated only when animals were exercised at 24 m/min and beyond. Similarly, HSP70 was elevated in RV at running speeds above 24 m/min but did not increase in WV until 27 m/min. In contrast, HSP70 content was initially elevated in the Sol but subsequently declined at the highest running speeds. The observed patterns of HSP70 expression in skeletal muscle were in general accordance with known muscle recruitment patterns and suggest that alterations in muscle loading, resulting from changes in exercise intensity, are an important component of exercise-induced increases in HSP70 content.  相似文献   

17.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   

18.
Rat soleus muscles were denervated and stimulated in vivo for periods of up to 104 days. Stimuli used were trains of 1 ms pulses at 100 Hz delivered for periods of 1 s; trains were repeated every 10-100 s. In a majority of animals the tension of the muscles was maintained at about 10% of normal, equivalent to muscles denervated but unstimulated for 20 days. At the longest periods the stimulated muscles developed ten times more tension than ones that were denervated but not stimulated. In denervated and denervated-stimulated muscles twitch contraction and relaxation times were prolonged, compared with controls, for up to 3 weeks. Thereafter both sets showed a speeding of the isometric twitch that was greater in the stimulated muscles. At the longest periods the twitch was as short as that of a denervated fast muscle. Stimulation did not affect contralateral denervated muscles. Twitch: tetanus ratios remained high despite stimulation, and muscles showed little post-tetanic potentiation. Tension developed more rapidly in the tetani of the stimulated muscles, even allowing for larger final values. Maximum velocity of shortening was increased in many of the stimulated muscles, and there was a proportional flattening of the force-velocity curve, i.e. a/P0 increased. Maximum velocity and a/P0 increased reciprocally with twitch time to peak, so that those muscles that had twitches most changed by stimulation also had their isotonic properties modified to the greatest extent. Even at the longest period of stimulation, twitch time course and tetanic tension were not converted to those of normal fast muscle.  相似文献   

19.
We have investigated the physiological role of desmin in skeletal muscle by measuring isometric tension generated in skinned fibres and intact skeletal muscles from desmin knock-out (DES-KO) mice. About 80% of skinned single extensor digitorum longus (EDL) fibres from adult DES-KO mice generated tensions close to that of wild-type (WT) controls. Weights and maximum tensions of intact EDL but not of soleus (SOL) muscles were lowered in DES-KO mice. Repeated contractions with stretch did not affect subsequent isometric tension in EDL muscles of DES-KO mice. Tension during high frequency fatigue (HFF) declined faster and this deficiency was compensated in DES-KO EDL muscles by 5 mM caffeine which had no influence on HFF in WT EDL. Furthermore, caffeine evoked twitch potentiation was higher in DES-KO than in WT muscles. We conclude that desmin is not essential for acute tensile strength but rather for optimal activation of intact myofibres during E-C coupling.  相似文献   

20.
Heat shock proteins (HSPs) help maintain cellular function in stressful situations, but the processes controlling their interactions with target proteins are not well defined. This study examined the binding of HSP72, HSP25, and αB-crystallin in skeletal muscle fibers following various stresses. Rat soleus (SOL) and extensor digitorum longus (EDL) muscles were subjected in vitro to heat stress or strongly fatiguing stimulation. Superficial fibers were "skinned" by microdissection and HSP diffusibility assessed from the extent of washout following 10- to 30 min exposure to a physiological intracellular solution. In fibers from nonstressed (control) SOL muscle, >80% of each HSP is readily diffusible. However, after heating a muscle to 40°C for 30 min ~95% of HSP25 and αB-crystallin becomes tightly bound at nonmembranous myofibrillar sites, whereas HSP72 bound at membranous sites only after heat treatment to ≥44°C. The ratio of reduced to oxidized cytoplasmic glutathione (GSH:GSSG) decreased approximately two- and fourfold after heating muscles to 40° and 45°C, respectively. The reducing agent dithiothreitol reversed HSP72 binding in heated muscles but had no effect on the other HSPs. Intense in vitro stimulation of SOL muscles, sufficient to elicit substantial oxidation-related loss of maximum force and approximately fourfold decrease in the GSH:GSSG ratio, had no effect on diffusibility of any of the HSPs. When skinned fibers from heat-treated muscles were bathed with additional exogenous HSP72, total binding increased approximately two- and 10-fold, respectively, in SOL and EDL fibers, possibly reflective of the relative sarco(endo)plasmic reticulum Ca(2+)-ATPase pump densities in the two fiber types. Phosphorylation at Ser59 on αB-crystallin and Ser85 on HSP25 increased with heat treatment but did not appear to determine HSP binding. The findings highlight major differences in the processes controlling binding of HSP72 and the two small HSPs. Binding was not directly related to cytoplasmic oxidative status, but oxidation of cysteine residues influenced HSP72 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号