首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theories regarding the evolution of spliceosomal introns differ in the extent to which the distribution of introns reflects either a formative role in the evolution of protein-coding genes or the adventitious gain of genetic elements. Here, systematic methods are used to assess the causes of the present-day distribution of introns in 10 families of eukaryotic protein-coding genes comprising 1,868 introns in 488 distinct alignment positions. The history of intron evolution inferred using a probabilistic model that allows ancestral inheritance of introns, gain of introns, and loss of introns reveals that the vast majority of introns in these eukaryotic gene families were not inherited from the most recent common ancestral genes, but were gained subsequently. Furthermore, among inferred events of intron gain that meet strict criteria of reliability, the distribution of sites of gain with respect to reading-frame phase shows a 5:3:2 ratio of phases 0, 1 and 2, respectively, and exhibits a nucleotide preference for MAG GT (positions -3 to +2 relative to the site of gain). The nucleotide preferences of intron gain may prove to be the ultimate cause for the phase bias. The phase bias of intron gain is sufficient to account quantitatively for the well-known 5:3:2 bias in phase frequencies among extant introns, a conclusion that holds even when taxonomic heterogeneity in phase patterns is considered. Thus, intron gain accounts for the vast majority of extant introns and for the bias toward phase 0 introns that previously was interpreted as evidence for ancient formative introns.  相似文献   

2.
Sequence comparison allows the detailed analysis of evolution at the nucleotide and amino acid levels, but much less information is known about the structural evolution of genes, i.e. how the number, length and distribution of introns change over time. We constructed a parsimonious model for the evolutionary rate of intron loss (IL) and intron gain (IG) within the Brassicaceae and found that IL/IG has been highly dynamic, with substantial differences between and even within lineages. The divergence of the Brassicaceae lineages I and II marked a dramatic change in the IL rate, with the common ancestor of lineage I losing introns three times more rapidly than the common ancestor of lineage II. Our data also indicate a subsequent declining trend in the rate of IL, although in Arabidopsis thaliana introns continue to be lost at approximately the ancestral rate. Variations in the rate of IL/IG within lineage II have been even more remarkable. Brassica rapa appears to have lost introns approximately 15 times more rapidly than the common ancestor of B. rapa and Schenkiella parvula, and approximately 25 times more rapidly than its sister species Eutrema salsugineum. Microhomology was detected at the splice sites of several dynamic introns suggesting that the non‐homologous end‐joining and double‐strand break repair is a common pathway underlying IL/IG in these species. We also detected molecular signatures typical of mRNA‐mediated IL, but only in B. rapa.  相似文献   

3.
The evolution of spliceosomal introns   总被引:21,自引:0,他引:21  
Although the widespread proliferation of introns in eukaryotic protein-coding genes remains one of the most poorly understood aspects of genomic architecture, major advances have emerged recently from large-scale genome sequencing projects and functional analyses of mRNA-processing events. Evidence supports the idea that spliceosomal introns were not only present in the stem eukaryote but diverged into at least two distinct classes very early in eukaryotic evolution. Some rough estimates of intron turnover rates are provided, and a testable hypothesis for the origin of new introns is proposed. In light of recent findings on the molecular natural history of splicing, various aspects of the phylogenetic and physical distributions of introns can now be interpreted in a theoretical framework that jointly considers the population-genetic roles of mutation, random genetic drift, and natural selection.  相似文献   

4.
Although hypotheses have been proposed and developed to interpret the origins and functions of introns, substantial controversies remain about the mechanism of intron evolution. The availability of introns in the intermediate state is quite helpful for resolving this debate. In this study, a new strain of diatom (denominated as DB21‐1) was isolated and identified as Olifantiella sp., which possesses multiple types of 18S rDNAs (obtained from genomic DNA; lengths ranged from 2,056 bp to 2,988 bp). Based on alignments between 18S rDNAs and 18S rRNA (obtained from cDNA; 1,783 bp), seven intron insertion sites (IISs) located in the 18S rDNA were identified, each of which displayed the polymorphism of intron presence/absence. Specific primers around each IIS were designed to amplify the introns and the results indicated that introns in the same IIS varied in lengths, while terminal sequences were conserved. Our study showed that the process of intron loss happens via a series of successive steps, and each step could derive corresponding introns under intermediate states. Moreover, these results indicate that the mechanism of genomic deletion that occurs at DNA level can also lead to exact intron loss.  相似文献   

5.
Analysis of evolution of exon-intron structure of eukaryotic genes   总被引:10,自引:0,他引:10  
The availability of multiple, complete eukaryotic genome sequences allows one to address many fundamental evolutionary questions on genome scale. One such important, long-standing problem is evolution of exon-intron structure of eukaryotic genes. Analysis of orthologous genes from completely sequenced genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists. The data on shared and lineage-specific intron positions were used as the starting point for evolutionary reconstruction with parsimony and maximum-likelihood approaches. Parsimony methods produce reconstructions with intron-rich ancestors but also infer lineage-specific, in many cases, high levels of intron loss and gain. Different probabilistic models gave opposite results, apparently depending on model parameters and assumptions, from domination of intron loss, with extremely intron-rich ancestors, to dramatic excess of gains, to the point of denying any true conservation of intron positions among deep eukaryotic lineages. Development of models with adequate, realistic parameters and assumptions seems to be crucial for obtaining more definitive estimates of intron gain and loss in different eukaryotic lineages. Many shared intron positions were detected in ancestral eukaryotic paralogues which evolved by duplication prior to the divergence of extant eukaryotic lineages. These findings indicate that numerous introns were present in eukaryotic genes already at the earliest stages of evolution of eukaryotes and are compatible with the hypothesis that the original, catastrophic intron invasion accompanied the emergence of the eukaryotic cells. Comparison of various features of old and younger introns starts shedding light on probable mechanisms of intron insertion, indicating that propagation of old introns is unlikely to be a major mechanism for origin of new ones. The existence and structure of ancestral protosplice sites were addressed by examining the context of introns inserted within codons that encode amino acids conserved in all eukaryotes and, accordingly, are not subject to selection for splicing efficiency. It was shown that introns indeed predominantly insert into or are fixed in specific protosplice sites which have the consensus sequence (A/C)AG|Gt.  相似文献   

6.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

7.
8.
We examined the gene structure of a set of 2563 Arabidopsis thaliana paralogous pairs that were duplicated simultaneously 20-60 MYA by tetraploidy. Out of a total of 23,164 introns in these genes, we found that 10,004 pairs have been conserved and 578 introns have been inserted or deleted in the time since the duplication event. This intron insertion/deletion rate of 2.7 x 10(-3) to 9.1 x 10(-4) per site per million years is high in comparison to previous studies. At least 56 introns were gained and 39 lost based on parsimony analysis of the phylogenetic distribution of these introns. We found weak evidence that genes undergoing intron gain and loss are biased with respect to gene ontology terms. Gene pairs that experienced at least 2 intron insertions or deletions show evidence of enrichment for membrane location and transport and transporter activity function. We do not find any relationship of intron flux to expression level or G + C content of the gene. Detection of a bias in the location of intron gains and losses within a gene depends on the method of measurement: an intragene method indicates that events (specifically intron losses) are biased toward the 3' end of the gene. Despite the relatively recent acquisition of these introns, we found only one case where we could identify the mechanism of intron origin--the TOUCH3 gene has experienced 2 tandem, partial, internal gene duplications that duplicated a preexisting intron and also created a novel, alternatively spliced intron that makes use of a duplicated pair of cryptic splice sites.  相似文献   

9.
We have investigated intron evolution in the compact genomes of 2 closely related species of pufferfishes, Fugu rubripes and Tetraodon nigroviridis, that diverged about 32 million years ago (MYA). Analysis of 148,028 aligned intron positions in 13,547 gene pairs using human as an outgroup identified 57 and 24 intron losses in Tetraodon and fugu lineages, respectively, and no gain in either lineage. For comparison, we analyzed 144,545 intron positions in 12,866 orthologous pairs of genes in human and mouse that diverged about 61 MYA using dog as an outgroup and identified 51 intron losses in mouse and 3 losses in human and no gain. The rate of intron loss in Tetraodon is higher than that in fugu, mouse, and human but lower than the previous estimates for other eukaryotes. The introns lost in pufferfishes and mammals are significantly shorter than the mean size of introns in the genome. One intron deleted in fugu and another in Tetraodon have left behind 6 and 3 nucleotides, respectively, suggesting that they were lost due to genomic deletions. Such losses of introns are likely to be the result of a higher rate of DNA deletions experienced by the genomes of pufferfishes compared with mammals. The shorter generation time of Tetraodon compared with fugu, and the rich diversity and higher activity of transposable elements in pufferfishes compared with mammals, may be responsible for the higher rate of intron loss in Tetraodon. Our findings indicate that overall very little intron turnover has occurred in pufferfishes and mammals during recent evolution and that intron gain is an extremely rare event in vertebrate evolution.  相似文献   

10.
Several facets of spliceosomal intron in apicomplexans remain mysterious. First, intron numbers vary across species by 2 orders of magnitude, indicating massive intron loss and/or gain. Second, previous studies have shown very different evolutionary patterns over different timescales, with 100-fold higher rates of intron loss/gain between genera than within genera. Third, the timing and dynamics of nearly complete intron loss in Cryptosporidium species, as well as reasons for retention of the few remaining introns, remain unknown. We compared intron positions in 785 orthologous genes between 3 moderate to intron-rich apicomplexan species. We estimate that the Theileria-Plasmodium ancestor had 4.5 times as many introns as modern Plasmodium species and 38% more than modern Theileria species, and that subsequent intron losses have outnumbered intron gains by 5.8 to 1 in Theileria and by some 56 to 1 in Plasmodium. Several patterns suggest that these intron losses occurred by recombination with reverse-transcribed mRNAs. Intriguingly, this finding suggests significant retrotransposon activity in the lineages leading to both Theileria and Plasmodium, in contrast to the dearth of known retrotransposons and intron loss within modern species from both genera. We also compared genomes from Cryptosporidium parvum and C. hominis and found no evidence of ongoing intron loss, nor of intron gain. By contrast, Cryptosporidium introns are less evolutionary conserved with Toxoplasma than are introns from other apicomplexans; thus the few remaining introns are not simply indispensable ancestral introns.  相似文献   

11.
Most of eukaryotic genes are interrupted by introns that need to be removed from pre-mRNAs before they can perform their function. This is done by complex machinery called spliceosome. Many eukaryotes possess two separate spliceosomal systems that process separate sets of introns. The major (U2) spliceosome removes majority of introns, while minute fraction of intron repertoire is processed by the minor (U12) spliceosome. These two populations of introns are called U2-type and U12-type, respectively. The latter fall into two subtypes based on the terminal dinucleotides. The minor spliceosomal system has been lost independently in some lineages, while in some others few U12-type introns persist. We investigated twenty insect genomes in order to better understand the evolutionary dynamics of U12-type introns. Our work confirms dramatic drop of U12-type introns in Diptera, leaving these genomes just with a handful cases. This is mostly the result of intron deletion, but in a number of dipteral cases, minor type introns were switched to a major type, as well. Insect genes that harbor U12-type introns belong to several functional categories among which proteins binding ions and nucleic acids are enriched and these few categories are also overrepresented among these genes that preserved minor type introns in Diptera.  相似文献   

12.
The number of nuclear group I introns from myxomycetes is rapidly increasing in GenBank as more rDNA sequences from these organisms are being sequenced. They represent an interesting and complex group of intervening sequences because several introns are mobile (or inferred to be mobile) and many contain large and unusual insertions in peripheral loops. Here we describe related group I introns at position 1389 in the small subunit rDNA of representatives from the myxomycete family Didymiaceae. Phylogenetic analyses support a common origin and mainly vertical inheritance of the intron. All S1389 introns from the Didymiaceae belong to the IC1 subclass of nuclear group I introns. The central catalytic core region of about 100 nt appears divergent in sequence composition even though the introns reside in closely related species. Furthermore, unlike the majority of group I introns from myxomycetes the S1389 introns do not self-splice as naked RNA in vitro under standard conditions, consistent with a dependence on host factors for folding or activity. Finally, the myxomycete S1389 introns are exclusively found within the family Didymiaceae, which suggests that this group I intron was acquired after the split between the families Didymiaceae and Physaraceae.  相似文献   

13.
14.
15.
The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.  相似文献   

16.
The enlargement of the genome size and the decrease in genome compactness with increase in the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, it has been suggested that the insertion of transposable elements might have an important role in driving intron evolution. The analysis of large portions of the human genome demonstrated that a relatively recent (50 to 100 MYA) accumulation of transposable elements appears to be biased, favoring a preferential insertion of LINE1 transposons into sex chromosomes rather than into autosomes. In the present work, the effect of chromosomal location on the increase in size of introns was evaluated with a comparative analysis performed on pairs of human paralogous genes, one located on the X chromosome and the second on an autosome. A phylogenetic analysis was also performed on the X-encoded proteins and their paralogs to confirm orthology-paralogy and to approximately estimate the time of gene duplication. Statistical analysis of total intron length for each pair of paralogous genes provided no evidence for a larger size of introns in the gene copies located on the X chromosome. On the opposite, introns of autosomal genes were found to be significantly longer than introns of their X-linked paralogs. Likewise, LINE1 elements were not significantly more frequent in X-chromosome introns, whereas the frequency of SINE elements showed a marginally significant bias toward autosomal introns.  相似文献   

17.
As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5′ end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns’ features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts.  相似文献   

18.
Does the intron/exon structure of eukaryotic genes belie their ancient assembly by exon-shuffling or have introns been inserted into preformed genes during eukaryotic evolution? These are the central questions in the ongoing ‘introns-early’ versus ‘introns-late’ controversy. The phylogenetic distribution of spliceosomal introns continues to strongly favor the intronslate theory. The introns-early theory, however, has claimed support from intron phase and protein structure correlations.  相似文献   

19.
Genome evolution is usually viewed through the lens of growth in size and complexity over time, exemplified by plants and animals. In contrast, genome reduction is associated with a narrowing of ecological potential, such as in parasites and endosymbionts. But, can nuclear genome reduction also occur in, and potentially underpin a major radiation of free-living eukaryotes? An intriguing example of this phenomenon is provided by the red algae (Rhodophyta) that have lost many conserved pathways such as for flagellar motility, macroautophagy regulation, and phytochrome based light sensing. This anciently diverged, species-rich, and ecologically important algal lineage has undergone at least two rounds of large-scale genome reduction during its >1 billion-year evolutionary history. Here, using recent analyses of genome data, we review knowledge about the evolutionary trajectory of red algal nuclear and organelle gene inventories and plastid encoded autocatalytic introns. We compare and contrast Rhodophyta genome evolution to Viridiplantae (green algae and plants), both of which are members of the Archaeplastida, and highlight their divergent paths. We also discuss evidence for the speculative hypothesis that reduction in red algal plastid genome size through endosymbiotic gene transfer is counteracted by ongoing selection for compact nuclear genomes in red algae. Finally, we describe how the spliceosomal intron splicing apparatus provides an example of “evolution in action” in Rhodophyta and how the overall constraints on genome size in this lineage has left significant imprints on this key step in RNA maturation. Our review reveals the red algae to be an exciting, yet under-studied model that offers numerous novel insights as well as many unanswered questions that remain to be explored using modern genomic, genetic, and biochemical methods. The fact that a speciose lineage of free-living eukaryotes has spread throughout many aquatic habitats after having lost about 25% of its primordial gene inventory challenges us to elucidate the mechanisms underlying this remarkable feat.  相似文献   

20.
The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite''s survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号