首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports several clinical cases for orthopaedic bone regeneration using an injectable bone substitute (MBCP Gel®) to demonstrate its safe use and efficiency in clinical applications. The biomaterial is a composite of microporous bioceramic hydroxyapatite granules that are associated with beta tricalcium phosphate (MBCP) and a synthetic hydrosoluble polysaccharide hydrogel (CE mark 123 and FDA dental domain registered). The present exploratory study demonstrated the generative osseous performance of this injectable bioceramic for filling various orthopaedic bone defects. The clinical cases showed bone ingrowth into the cavities created by drilling when removing the aseptic osteonecrosis of the femoral head during biopsy taking. Furthermore, bone reconstruction was seen after filling large cystic defects, at the time of the revision surgery of the hip prosthesis. Resorption and bone ingrowth with trabecular bone architecture were observed in defects created in long bones (femur and tibia). Patients were followed during 5 months to 1 year. The overall results demonstrated the safe use and the clinical performance of this injectable bioceramic in orthopaedics.  相似文献   

2.
The present study investigated hydroxyapatite biomaterials implanted in critical-size defects in the calvaria of adult sheep to determine the optimal bioengineering of hydroxyapatite composites to facilitate bone ingrowth into these materials. Five calvarial defects measuring 16.8 mm in diameter were made in each of 10 adult sheep. Three defects were filled with cement paste composites of hydroxyapatite and beta-tricalcium phosphate as follows: (1) 100 percent hydroxyapatite-cement paste, (2) 60 percent hydroxyapatite-cement paste, and (3) 20 percent hydroxyapatite-cement paste. One defect was filled with a ceramic composite containing 60 percent hydroxyapatite-ceramic, and the fifth defect remained unfilled. One year after implantation, the volume of all biomaterials was determined by computed tomography, and porosity and bone replacement were determined using backscatter electron microscopy. Computed tomography-based volumetric assessment 1 year after implantation demonstrated that none of the unfilled cranial defects closed over the 1-year period, confirming that these were critical-size defects. There was a significant increase in volume in both the cement paste and ceramic implants containing 60 percent hydroxyapatite (p < 0.01). There was no significant change in volume of the remaining cement paste biomaterials. Analysis of specimens by backscatter electron microscopy demonstrated mean bone replacement of 4.8 +/- 1.4 percent (mean +/- SEM) in 100 percent hydroxyapatite-cement paste, 11.2 +/- 2.3 percent in 60 percent hydroxyapatite-cement paste, and 28.5 +/- 4.5 percent in 20 percent hydroxyapatite-cement paste. There was an inverse correlation between the concentration of hydroxyapatite and the amount of bone replacement in the cement paste for each composite tested (p < 0.01). Bone replacement in 60 percent hydroxyapatite-ceramic composite (13.6 +/- 2.0 percent) was not significantly different from that in 60 percent hydroxyapatite-cement paste. Of note is that the ceramic composite contained macropores (200 to 300 microm) that did not change in size over the 1-year period. All cement paste composites initially contained micropores (3 to 5 nm), which remained unchanged in 100 percent hydroxyapatite-cement paste. Cement paste implants containing increased tricalcium phosphate demonstrated a corresponding increase in macropores following resorption of the tricalcium phosphate component. Bone replacement occurred within the macropores of these implants. In conclusion, there was no significant bone ingrowth into pure hydroxyapatite-cement paste (Bone Source, Stryker-Leibinger Inc., Dallas, Texas) in the present study. The introduction of macropores in a biomaterial can optimize bone ingrowth for reconstruction of critical-size defects in calvaria. This was demonstrated in both the ceramic composite of hydroxyapatite tested and the cement paste composites of hydroxyapatite by increasing the composition of a rapidly resorbing component such as beta-tricalcium phosphate.  相似文献   

3.
Cementless hip prostheses with porous outer coating are commonly used to repair the proximally damaged femurs. It has been demonstrated that stability of prosthesis is also highly dependent on the bone ingrowth into the porous texture. Bone ingrowth is influenced by the mechanical environment produced in the callus. In this study, bone ingrowth into the porous structure was predicted by using a mechano-regulatory model. Homogenously distributed pores (200 and 800 \(\upmu \)m in diameter) and functionally graded pores along the length of the prosthesis were introduced as a porous coating. Bone ingrowth was simulated using 25 and 12 \(\upmu \)m micromovements. Load control simulations were carried out instead of traditionally used displacement control. Spatial and temporal distributions of tissues were predicted in all cases. Functionally graded pore decreasing models gave the most homogenous bone distribution, the highest bone ingrowth (98%) with highest average Young’s modulus of all tissue phenotypes approximately 4.1 GPa. Besides this, the volume of the initial callus increased to 8.33% in functionally graded pores as compared to the 200 \(\upmu \)m pore size models which increased the bone volume. These findings indicate that functionally graded porous surface promote bone ingrowth efficiently which can be considered to design of surface texture of hip prosthesis.  相似文献   

4.
Collagen fabrics as biomaterials   总被引:3,自引:0,他引:3  
Tissue-engineered implants require appropriate biomaterials to serve the required physical function of the tissue being repaired or replaced while facilitating remodeling of the implant. We report on the development of implantable fabrics manufactured from continuous collagen threads. The collagen threads are formed by extrusion of native, acid-extracted bovine colagen into a buffered solution of polyethylene glycol, followed by rinsing and air drying. The high manufacturing rate of such threads permits the production of colagen fabrics of various configurations. The fiber diameter can be controlled, and threads with dry diameters as low as 25 mum have been produced. Braids and bundles of collagen threads implanted as a replacement of the anterior cruciate ligament in a dog model were completely remodeled into host tissue by 12 weeks. Knitted collagen fabrics implanted in a rat abdominal repair model prevented herniation, and connective tissue ingrowth was observed within the fabric by 12 weeks.  相似文献   

5.
《IRBM》2021,42(5):302-312
Scaffolds for bone tissue applications have been an outstanding alternative to repair and regenerate bone tissue defects caused by traumas or illness. There are many methods available to fabricate porous scaffold such as solvent casting, gas bubble, phase separation, electrospinning, particle-leaching, among others. The particle-leaching technique has shown advantages in bone tissue regeneration applications, the main benefit of this technique is related to the porogen particle size and the porogen content in the manufacture of scaffolds. Tricalcium phosphate is one calcium phosphate that presented appropriated characteristic to be used for bone tissue engineering due to the chemical properties similar to the human bones. Scaffolds of tricalcium phosphate β phase were made using sugar particles. The porogen was varied in amounts of 50, 60 and 70 wt.% of two commercial sugars with the remainder of the composition made up of tricalcium phosphate powders. The pore sizes in all the scaffolds were in the range of 90 to 600 μm with an irregular pore morphology and the porosity was in the range of 63 to 77%.  相似文献   

6.
All hip replacement prostheses alter the load transfer from the hip joint into the femur by changing the mechanical loading of the proximal femur from an externally to an internally loaded system. This alteration of the load transfer causes stress shielding and might lead to severe bone loss, especially with uncemented prostheses. To minimize these effects, load transfer to the femur should occur as proximal as possible. In order to support sufficient primary stability, however, directly post operative (PO) distal stabilization is reasonable. Consequently, the prostheses have to alter its mechanical characteristics after implantation. This concept is referred to as load-shift concept. Primary stability during the early PO state is provided by a prosthesis shaft, which is widened at the tip by a biodegradable pin. After resorption of the pin load transfer occurs no longer distally. The objective of this study was the numerical evaluation of the load-shift concept. The analysis was performed with a finite element model. Three-dimensional non-linear dynamic gait analyses data were used to evaluate whether the load transfer during walking can be altered effectively by insertion and resorption of a distal pin. Directly PO 38% of the transverse load is transferred through the prosthesis shaft and micromotion of the proximal prostheses tip is below 55 microm. After resorption of the pin, no transverse loads are transferred through the prosthesis shaft. Therefore, the loading of the proximal bone tissue is far more pronounced than in the case of a standard prosthesis, demonstrating the feasibility of the load-shift concept. A balanced degradation of the pin simultaneously with the ingrowth of the prosthesis is expected to reduce hip replacement complications.  相似文献   

7.
Bone ingrowth simulation for a concept glenoid component design   总被引:5,自引:0,他引:5  
Glenoid component loosening is the major problem of total shoulder arthroplasty. It is possible that uncemented component may be able to achieve superior fixation relative to cemented component. One option for uncemented glenoid is to use porous tantalum backing. Bone ingrowth into the porous backing requires a degree of stability to be achieved directly post-operatively. This paper investigates the feasibility of bone ingrowth with respect to the influence of primary fixation, elastic properties of the backing and friction at the bone prosthesis interface. Finite element models of three glenoid components with different primary fixation configurations are created. Bone ingrowth into the porous backing is modelled based on the magnitude of the relative interface micromotions and mechanoregulation of the mesenchymal stem cells that migrated via the bonded part of the interface. Primary fixation had the most influence on bone ingrowth. The simulation showed that its major role was not to firmly interlock the prosthesis, but rather provide such a distribution of load, that would result in reduction of the peak interface micromotions. Should primary fixation be provided, friction has a secondary importance with respect to bone ingrowth while the influence of stiffness was counter intuitive: a less stiff backing material inhibits bone ingrowth by higher interface micromotions and stimulation of fibrous tissue formation within the backing.  相似文献   

8.
The stress distribution within the components and the micromotion of the interface significantly influence the long-term function of the taper lock joint in a modular segmental bone replacement prosthesis. Bending-induced gap opening between the cone and the sleeve can lead to an inflow of biological fluids, and thus accelerate implant corrosion. Local areas of high stress can also accelerate the corrosive processes and initiate local yielding, which may lead to a fracture in one of the components. In this study, a 3-D finite element (FE) model of a modular segmental bone replacement prosthesis was developed to study the interface micromotion and component stress distribution under the maximum loads applied during gait for a taper lock joint with multiple material combinations. Bending was the main cause of the local high stresses and interface separation within the taper joint. For Ti6A14V components, cortical bone bridging and ingrowth across the taper lock gap reduced the peak stress by 45% and reduced the contact interface separation by 55%. Such tissue formation around the taper lock joint could also form a closed capsule to restrict the migration of potential wear particles and thus prevent the biologic process of bone resorption induced by metal debris.  相似文献   

9.
Post‐cloacal bones of gekkotans may be present as a single (medial) pair, two pairs (medial and lateral), or may be lacking. We, herein, demonstrate that the presence of a single medial pair is the ancestral condition for the Gekkota, that the lateral pair is of sporadic occurrence within and between families, except for the Eublepharidae where it is universal, and that absence is also of sporadic occurrence except for the Sphaerodactylidae where it is the ancestral condition. Adult male Tokay geckos (Gekko gecko) possess only the medial pair of bones, and these exhibit a regionally‐specific expression of woven, fibrolamellar, and lamellar bone, and an enclosed medullary cavity. Females and small juvenile males lack bony elements but exhibit a conspicuous band of dense connective tissue located about the anterior and lateral margins of the cloacal sacs. As males grow and attain sexual maturity, the medial post‐cloacal bones condense in this band of dense connective tissue, and are thus shown to be dermal ossifications, similar to osteoderms but with muscular associations (although this is also known for crocodylians). Based upon ontogenetic data we set forth a scenario to explain the loss of the medial post‐cloacal bones in various lineages. Differential staining of the cloacal sacs failed to reveal any specialized glandular structures. Investigation of the post‐cloacal spurs shows them to be associated with cellular connective tissue of a type similar to that found in the vicinity of the medial post‐cloacal bones. This suggests that the lateral post‐cloacal bones may also be dermal bones, but histological evidence is needed to corroborate this. J. Morphol. 277:264–277, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling.  相似文献   

11.
Periprosthetic bone resorption after tibial prosthesis implantation remains a concern for long-term fixation performance. The fixation techniques may inherently aggravate the "stress-shielding" effect of the implant, leading to weakened bone foundation. In this study, two cemented tibial fixation cases (fully cemented and hybrid cementing with cement applied under the tibial tray leaving the stem uncemented) and three cementless cases relying on bony ingrowth (no, partial and fully ingrown) were modelled using the finite element method with a strain-adaptive remodelling theory incorporated to predict the change in the bone apparent density after prosthesis implantation. When the models were loaded with physiological knee joint loads, the predicted patterns of bone resorption correlated well with reported densitometry results. The modelling results showed that the firm anchorage fixation formed between the prosthesis and the bone for the fully cemented and fully ingrown cases greatly increased the amount of proximal bone resorption. Bone resorption in tibial fixations with a less secure anchorage (hybrid cementing, partial and no ingrowth) occurred at almost half the rate of the changes around the fixations with a firm anchorage. The results suggested that the hybrid cementing fixation or the cementless fixation with partial bony ingrowth (into the porous-coated prosthesis surface) is preferred for preserving proximal tibial bone stock, which should help to maintain post-operative fixation stability. Specifically, the hybrid cementing fixation induced the least amount of bone resorption.  相似文献   

12.
Allografts of embryonic limb buds were grafted orthotopically on embryos of Chelydra serpentina. Donors were from a different geographic area, the same geographic area, or siblings. The initial indication of rejection was excessive sloughing of epidermis. This was followed by loss of muscle, claws and bone. Early histological changes involved an infiltration of mononuclear or rejection cells primarily associated with small blood vessels of the connective tissue. Subsequently, muscle and bone were lost and they were replaced by connective tissue. Epidermis and nerves persisted. The skeletal cartilages were isolated from immunological activity. Although the incidence of rejection was essentially the same in sibling and non-sibling combinations, the initial external signs of rejection occurred earliest when donor and host were from different geographic areas but not later than two years after hatching. The first signs of rejection in sibling allografts occurred not later than three years after hatching. Animals that survived these periods without rejection did not show subsequent rejection.  相似文献   

13.
目的:建立人工半骨盆假体置换与联合腰椎椎弓根螺钉固定后的三维有限元模型,评价腰骶段生物力学改变后半骨盆假体力学结构的特点。方法:采用CT薄层扫描采集原始数据,分别建立正常骨盆、半骨盆假体置换术后以及半骨盆假体置换联合腰椎椎弓根螺钉固定术后骨盆的三维有限元模型,分别在第4腰椎上终板平面施以500 N的垂直纵向载荷,分析不同骨盆模型的应力分布特点。结果:与正常骨盆有限元模型相比,半骨盆假体置换术后健侧骨盆应力分布以骶髂关节、髋臼窝及耻骨为主,置换侧半骨盆假体以耻骨连接棒、髋臼杯及髂骨座为主,最大应力出现在耻骨连接棒,应力峰值为65.62 MPa。联合腰椎椎弓根螺钉固定后健侧应力相对减小,置换侧髂骨固定座与骶骨固定处应力相对减小,应力分布以腰椎椎弓根钉棒、耻骨连接棒及髋臼杯为主,最大应力出现在椎弓根螺钉,应力峰值为107 MPa。结论:半骨盆假体置换联合腰椎椎弓根螺钉固定后钉棒分担了半骨盆置换后健侧骨盆及置换侧髂骨固定座与骶骨固定处附近的部分应力,缓解应力集中现象,降低术后骨盆破坏风险,一定程度上增加了半骨盆置换后骨盆的稳定性。  相似文献   

14.
A variety of bone chambers are used in orthopedic research to study bone and tissue ingrowth in small and large animals. If different bone chambers are placed in one species, differences in bone ingrowth are observed. For instance, bone ingrowth in the bone conduction chamber (BCC) is high, but is low or absent in the repeated sampling bone chamber (RSBC). This difference may be explained by the design and fixation of these chambers. It is known that stress shielding and micromovement can influence bone formation. The objective of the study reported here was to determine whether stress shielding or soft tissue movement affected bone ingrowth in the BCC in the goat. Two types of caps were made, with fixation similar to that of the fixation plate of the RSBC. By placing the caps over the BCCs and fixating the caps directly to the tibial bone, the effect of stress shielding was studied. One cap was in direct contact with the bone chamber underneath, the other cap did not touch the chamber. This difference was used to observe whether movement of the soft tissue on top of the chamber and cap would affect bone ingrowth. Each limb received one control chamber without a cap and a chamber with a cap, either with or without contacting the BCC, yielding four implants per goat. After 12 weeks, bone and total tissue ingrowths were measured. Bone ingrowth was seen in 38 of 40 chambers. Total tissue and bone ingrowths were comparable between control chambers and BCCs with a cap, irrespective of type. Neither stress shielding, nor lack of movement of soft tissue affected bone ingrowth. Other factors in the design of the chambers were responsible for the difference in bone ingrowth between the BCC and the RSBC.  相似文献   

15.
Biological substitutes for autologous bone flaps could be generated by combining flap pre-fabrication and bone tissue engineering concepts. Here, we investigated the pattern of neotissue formation within large pre-fabricated engineered bone flaps in rabbits. Bone marrow stromal cells from 12 New Zealand White rabbits were expanded and uniformly seeded in porous hydroxyapatite scaffolds (tapered cylinders, 10-20 mm diameter, 30 mm height) using a perfusion bioreactor. Autologous cell-scaffold constructs were wrapped in a panniculus carnosus flap, covered by a semipermeable membrane and ectopically implanted. Histological analysis, substantiated by magnetic resonance imaging (MRI) and micro-computerized tomography scans, indicated three distinct zones: an outer one, including bone tissue; a middle zone, formed by fibrous connective tissue; and a central zone, essentially necrotic. The depths of connective tissue and of bone ingrowth were consistent at different construct diameters and significantly increased from respectively 3.1 +/- 0.7 mm and 1.0 +/- 0.4 mm at 8 weeks to 3.7+/- 0.6 mm and 1.4 +/- 0.6 mm at 12 weeks. Bone formation was found at a maximum depth of 1.8 mm after 12 weeks. Our findings indicate the feasibility of ectopic pre-fabrication of large cell-based engineered bone flaps and prompt for the implementation of strategies to improve construct vascularization, in order to possibly accelerate bone formation towards the core of the grafts.  相似文献   

16.
目前,磷酸钙骨水泥因其具有优良的生物性能已被广泛用于骨组织工程,但它自固化后只是形成具有微孔和封闭气孔的致密块体,其孔径尺寸和连通性仍远达不到骨组织工程的最佳要求.本研究采用α-TCP为原料,以过氧化氢作为发泡剂,使用模具插针法制得一种具有大孔径和中空管的多孔磷酸钙骨水泥材料.孔径达到900μm,孔隙率为50.67%,抗折强度达到5.84MPa.通过扫描电镜照片观察和分析微观结构.结果表明,通过这种方法可以制得具有理想孔径尺寸和连通性的多孔磷酸钙骨水泥,可以说,这为制备用于骨组织工程的多孔磷酸钙骨水泥创造了一种新的方法.  相似文献   

17.
Bone ingrowth has been studied extensively in rats by use of bone chambers. However, it is not known whether results in small animals, with respect to bone ingrowth processes, are similar in large animals, in which more realistic models are often used. Since the metabolic rate in small animals is, in general, higher than that in larger species, we hypothesized that bone ingrowth in chambers develops more rapidly in small animals. Therefore, identical bone chambers were placed in the tibias of rats and goats. After 6 and 12 weeks, histologic and histomorphometric examinations were carried out to measure bone and tissue ingrowth distances. Bone ingrowth was higher in both species at 12, compared with 6 weeks (P < 0.01). Tissue ingrowth in general (including soft tissue) was less in rats than in goats at both time periods (P < 0.001). However, bone ingrowth did not differ between species. Thus, when differences in size of an osseous defect are corrected for, there seems to be only little influence of differences in body size.  相似文献   

18.
John C. Callaghan 《CMAJ》1964,91(9):411-421
The aortic and mitral valves were replaced in 50 patients at the University of Alberta Hospital using the Starr-Edwards ball-valve prosthesis. The basis of the selection of 20 patients for isolated aortic valve replacement and 27 for mitral valve replacement using this type of prosthesis is presented, and the techniques of insertion of the aortic and mitral valve are described in detail. Of the 27 patients in whom the mitral valve was replaced by the Starr-Edwards prosthesis six died within 30 days of surgery and two after discharge from hospital at two and a half and four months, respectively. Left atrial thrombosis was the cause of death in four of these patients. In 20 patients in whom the aortic valve was replaced, four died in hospital and two died more than 30 days after returning home. Three of these six patients died from bleeding—the result of the use of anticoagulants. The difficulty in assessing whether or not anticoagulants are needed following replacement by a Starr-Edwards prosthesis is considered. It is felt, in our present state of knowledge, that anticoagulants should be used following mitral valve replacement but are probably not essential following replacement of the aortic valve. Two patients survived replacement of both aortic and mitral valves and have been followed up 18 months and seven months, respectively.  相似文献   

19.
Fabricating individualized tissue engineering scaffolds based on the three-dimensional shape of patient bone defects is required for the successful clinical application of bone tissue engineering. However, there are currently no reported studies of individualized bone tissue engineering scaffolds that truly reproduce a patient-specific bone defect. We fabricated individualized tissue engineering scaffolds based on alveolar bone defects. The individualized poly(lactide-co-glycolide) and tricalcium phosphate composite scaffolds were custom-made by acquiring the three-dimensional model through computed tomography, which was input into the computer-aided low-temperature deposition manufacturing system. The three-dimensional shape of the fabricated scaffold was identical to the patient-specific alveolar bone defects, with an average macropore diameter of 380 μm, micropore diameters ranging from 3 to 5 μm, and an average porosity of 87.4%. The mechanical properties of the scaffold were similar to adult cancellous bone. Scaffold biocompatibility was confirmed by attachment and proliferation of human bone marrow mesenchymal stem cells. Successful realization of individualized scaffold fabrication will enable clinical application of tissue-engineered bone at an early date.  相似文献   

20.
The mechanism of antler casting in the fallow deer.   总被引:1,自引:0,他引:1  
The process by which antlers are detached from their pedicles was examined histologically in fallow deer castrated in the autumn to induce precocious casting. Osteoclastic erosion across an abscission line between the dead bone of the antler and the living bone of the pedicle was found to be responsible for the separation of the 2. As early as 3 days after castration, osteoclasts and associated lacunae were present on the sides of the pedicle bone. These were then found in progressively deeper locations, by 2 weeks extending across the entire width of the pedicle. Concomitant with the centripetal spread of osteoclasts was the enlargement of Haversian canals, the surfaces of which became lined with osteoclasts. These widening vascular channels within the bone were filled with connective tissue, which in precasting stages formed a mesodermal pad about 1 mm thick. In later stages, a circumferential cleft was excavated beneath the antler burr, and connective tissues from the surrounding pedicle skin invaded the space between the antler and pedicle. After casting, the ingrowing integumental tissues fused with the mesodermal tissues derived from the vascular channels of the pedicle to give rise to an incipient antler bud beneath the scab. The ingrowth of epidermis capable of de novo hair follicle formation gave rise to the future velvet skin that envelops the elongating antler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号