共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sequence analysis of the URA1 gene encoding orotidine-5'-monophosphate decarboxylase of Schizophyllum commune 总被引:6,自引:0,他引:6
The URA1 gene (encoding orotidine-5'-monophosphate decarboxylase) of the basidiomycete fungus Schizophyllum commune was mapped to a 1.4-kb BglI-BamHI fragment of two independent phage lambda clones previously isolated from a Schizophyllum genomic library. The fragment was identified by its ability to complement Schizophyllum ura1 mutants via transformation. The complete nucleotide sequence of the fragment containing the URA1 gene was determined. Sequence analysis revealed that the coding region of the URA1 gene encompasses a polypeptide of 279 amino acids (aa) interrupted by two small introns. The deduced aa sequence corresponds to 30.3 kDa and is substantially similar to the sequences of analogous polypeptides from other organisms. No canonical 5'-TATA sequence nor 3'-AATAAA polyadenylation signal are evident in the flanking regions of the URA1 gene. 相似文献
3.
De Maeseneire SL De Groeve MR Dauvrin T De Mey M Soetaert W Vandamme EJ 《FEMS microbiology letters》2006,261(2):262-271
A 2918 bp sequence coding for the orotidine-5'-monophosphate decarboxylase enzyme (OMPD) was isolated from the genome of Myrothecium gramineum. This sequence was analysed and, remarkably, it is the first OMPD gene of a Sordariomycete that has an intron. The gene codes for an enzyme of 282 amino acids. The nucleotide sequence and the amino acid sequence were compared with fungal OMPD sequences. They show the highest similarity to OMPD genes and enzymes of Aspergillus sp., Penicillium sp. and Cladosporium fulvum. The functionality of the gene as a selection marker was proven by complementation of the uracil auxotrophy of Aspergillus nidulans FGSC A722. 相似文献
4.
In mammals, the bifunctional protein UMP synthase contains the final two enzymatic activities, orotate phosphoribosyltransferase and orotidine-5'-monophosphate decarboxylase (ODCase), for de novo biosynthesis of UMP. The plasmid pMEJ contains a cDNA for the ODCase domain of mouse Ehrlich ascites UMP synthase. The cDNA from pMEJ was joined to the Saccharomyces cerevisiae iso-1-cytochrome c (CYC1) promoter and the first four CYC1 coding nucleotides in the plasmid pODCcyc. ODCase-deficient yeast cells (HF200x1) transformed with pODCcyc expressed an active ODCase domain with a specific activity of 20 nmol/min/mg in cell extracts. The expressed ODCase domain has a lower affinity for the substrate orotidine 5'-monophosphate and the inhibitor 6-azauridine 5'-monophosphate than intact UMP synthase or an ODCase domain isolated after proteolysis of homogenous UMP synthase. Sucrose density gradient sedimentation experiments showed that the expressed ODCase domain forms a dimer in the presence of ligands which bind at the catalytic site. These studies support the existence of an ODCase structural domain which contains the ODCase catalytic site and a dimerization surface of UMP synthase, but the domain may not have the regulatory site required to form the altered dimer form. 相似文献
5.
6.
7.
Quiles-Rosillo MD Ruiz-Vázquez RM Torres-Martínez S Garre V 《FEMS microbiology letters》2003,222(2):229-236
The pyrG gene of the fungus Blakeslea trispora, encoding orotidine-5'-monophosphate decarboxylase (OMPD) enzyme, was cloned by heterologous hybridization of a genomic library with the Mucor circinelloides pyrG gene. The deduced amino acid sequence of the B. trispora pyrG gene is highly similar to the OMPD from other organisms. Hybridization analyses revealed that the only copy of this gene present in the genome of B. trispora is constitutively expressed. Heterologous complementation of a mutant of M. circinelloides deficient in OMPD activity with the B. trispora pyrG gene and promoter sequence confirmed the function of this gene. This functional complementation demonstrates that heterologous expression in M. circinelloides might be used to investigate the function of genes of B. trispora. 相似文献
8.
The mechanism of the enzyme orotidine-5(')-monophosphate decarboxylase (OMP decarboxylase, ODCase) is not fully characterized; some of the proposed mechanisms suggest the possibility of hydrogen rearrangement (shift from C5 to C6 or loss of H5 to solvent) during catalysis. In this study, we sought mechanistic information for the ODCase reaction by examining the extent of hydrogen exchange in the product uridine-5(')-monophosphate, in combination with ODCase, at the H5 and H6 positions. In a subsequent experiment, partially deuterated OMP was prepared, and the extent of 2H5 rearrangement or loss to solvent was examined by integration of 1H nuclear magnetic resonance signals in the substrate and the resulting enzymatically decarboxylated product. The absence of detectable hydrogen exchange in these experiments limits somewhat the possible mechanisms for ODCase catalysis. 相似文献
9.
The multifunctional protein uridine 5'-monophosphate (UMP) synthase catalyzes the final two reactions of the de novo biosynthesis of UMP in mammalian cells by the sequential action of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23). This protein is composed of one or two identical subunits; the monomer weighs of 51,500 daltons. UMP synthase from mouse Ehrlich ascites cells can exist as three distinct species as determined by sucrose density gradient centrifugation: a 3.6 S monomer, a 5.1 S dimer, and a 5.6 S conformationally altered dimer. Limited digestion of each of these three species with trypsin produced a 28,500-dalton peptide that was relatively resistant to further proteolysis. The peptide appears to be one of the two enzyme domains of UMP synthase for it retained only OMP decarboxylase activity. Similar results were obtained when UMP synthase was digested with elastase. OMP decarboxylase activity was less stable for the domain than for UMP synthase; the domain can rapidly lose activity upon storage or upon dilution. The size of the mammalian OMP decarboxylase domain is similar to that of yeast OMP decarboxylase. If the polypeptides which are cleaved from UMP synthase by trypsin are derived exclusively from either the amino or the carboxyl end of UMP synthase, then the size of a fragment possessing the orotate phosphoribosyltransferase domain could be as large as 23,000 daltons which is similar in size to the orotate phosphoribosyltransferase of yeast and of Escherichia coli. 相似文献
10.
A potential alternate substrate for orotidine-5'-monophosphate decarboxylase, 2- thio-orotidine-5'-monophosphate, was synthesized enzymatically and purified by a modification of a previous account (K. Shostak, and M. E. Jones 1992, Biochemistry 31, 12155-12161). Characterization of the product was confirmed by mass spectrometry, (31)P NMR, and utilization by orotate phosphoribosyltransferase in the direction of pyrophosphorolysis. The previous work probably did not result in the purification of the desired compound, as evidenced by our observation of 2-thioOMP's sensitivity to high temperature, as used previously. Using a very sensitive HPLC assay for the potential decarboxylated product 2-thioUMP, no measurable activity of ODCase toward the alternate substrate was observed, representing a decarboxylation rate decreased by 10(-7) from the k(cat) for ODCase toward OMP. Additionally, 2-thioOMP effects no inhibition of ODCase decarboxylation of OMP at a concentration of 50 microM, indicating a poor ability to bind to the ODCase active site. The results bear implications for proposed mechanisms for catalysis by ODCase. 相似文献
11.
柿果实ACC合成酶cDNA的克隆及其序列分析 总被引:7,自引:0,他引:7
根据其它植物ACC合成酶(1-aminocyclopropane-1-carboxylic acid synthase,ACS)氨基酸保守区,设计1组简并引物,用RT-PCR法,从柿(Diospyros kaki Thunb.)果实扩增出3个约1kb左右的cDNA片段,将其克隆至pGEM-T载体上,对这些重组克隆进行序列测定和氨基酸序列推导,DK-ACS1由1101个碱基组成,编码364个氨基酸;DK-ACS2是1086个碱基,编码359个氨基酸;DK-ACS3为1089个碱基,编码363个氨基酸。它们均具有其它植物ACS合成酶中存在的7个保守区和11个不变氨基酸残基,且在多肽水平上有较高的同源性。与番茄LE-ACS2的同源性DK-ACS1是60.5A%,DK-ACS2是70.7%,DK-ACS3为66.9%,与甜瓜CM-ACS1的同源性依次分别是60.4%,72.1%和64.4%。 相似文献
12.
13.
Wittmann JG Heinrich D Gasow K Frey A Diederichsen U Rudolph MG 《Structure (London, England : 1993)》2008,16(1):82-92
UMP synthase (UMPS) catalyzes the last two steps of de novo pyrimidine nucleotide synthesis and is a potential cancer drug target. The C-terminal domain of UMPS is orotidine-5'-monophosphate decarboxylase (OMPD), a cofactor-less yet extremely efficient enzyme. Studies of OMPDs from micro-organisms led to the proposal of several noncovalent decarboxylation mechanisms via high-energy intermediates. We describe nine crystal structures of human OMPD in complex with substrate, product, and nucleotide inhibitors. Unexpectedly, simple compounds can replace the natural nucleotides and induce a closed conformation of OMPD, defining a tripartite catalytic site. The structures outline the requirements drugs must meet to maximize therapeutic effects and minimize cross-species activity. Chemical mimicry by iodide identified a CO(2) product binding site. Plasticity of catalytic residues and a covalent OMPD-UMP complex prompt a reevaluation of the prevailing decarboxylation mechanism in favor of covalent intermediates. This mechanism can also explain the observed catalytic promiscuity of OMPD. 相似文献
14.
15.
Oxipurinol and orotic aciduria: effect on the orotidine-5'-monophosphate decarboxylase activity of cultured human fibroblasts 总被引:2,自引:0,他引:2
Growth in certain pyrimidines or in oxipurinol, whose respective ribotides inhibit the final enzyme in the synthetic sequence leading to UMP, causes cultured cells to develop similar increases in activity for that enzyme. The increase is independent of the genotype of the cells for the known Mendelian mutations affecting the basal level of enzyme activity. 相似文献
16.
The crystal structures of the enzyme orotidine-5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with its product UMP and the inhibitors 6-hydroxyuridine 5'-phosphate (BMP), XMP, and CMP are reported. A mutant version of the protein, in which four residues of the flexible phosphate-binding loop (180)Gly-Gly(190) were removed and Arg(203) was replaced by alanine, was also analyzed. The XMP and CMP complexes reveal a ligand-binding mode that is distinct from the one identified previously with the aromatic rings located outside the binding pocket. A potential pathway for ligand binding is discussed. 相似文献
17.
Molecular characterization of ura1, a mutant allele for orotidine-5'-monophosphate decarboxylase in Schizophyllum commune 总被引:1,自引:0,他引:1
Abstract The basis of the auxotrophic ural phenotype in Schizophyllum commune has been investigated. Two point mutations causing changes in conserved amino acid positions 62 (from lysine to glutamate) and 79 (from leucine to phenylalanine) most likely are the cause for the observed phenotype, whereas the overall gene structure was unchanged. Since reversion rates in this locus are extremely low, a single point mutation could not be expected to be the cause for the mutation. Besides the two point mutations expected to be induced by UV mutagenesis, the two alleles investigated from independently isolated strains differ by approximately 7% in nucleic acid sequence and about 3% in amino acid sequence, indicating a distant relationship between the strains used. 相似文献
18.
19.
Investigation of the enzymatic mechanism of yeast orotidine-5'-monophosphate decarboxylase using 13C kinetic isotope effects 总被引:1,自引:0,他引:1
Orotidine-5'-monophosphate decarboxylase (ODCase) from Saccharomyces cerevisiae displays an observed 13C kinetic isotope effect of 1.0247 +/- 0.0008 at 25 degrees C, pH 6.8. The observed isotope effect is sensitive to changes in the reaction medium, such as pH, temperature, or glycerol content. The value of 1.0494 +/- 0.0006 measured at pH 4.0, 25 degrees C, is not altered significantly by temperature or glycerol, and thus the intrinsic isotope effect for the reaction is apparently being observed under these conditions and decarboxylation is almost entirely rate-determining. These data require a catalytic mechanism with freely reversible binding and one in which a very limited contribution to the overall rate is made by chemical steps preceding decarboxylation; the zwitterion mechanism of Beak and Siegel [Beak, P. & Siegel, B. (1976) J. Am. Chem. Soc. 98, 3601-3606], which involves only protonation of the pyrimidine ring, is such a mechanism. With use of an intrinsic isotope effect of 1.05, a partitioning factor of less than unity is calculated for ODCase at pH 6.0, 25 degrees C. A quantitative kinetic analysis using this result excludes the possibility of an enzymatic mechanism involving covalent attachment of an enzyme nucleophile to C-5 of the pyrimidine ring. The observed isotope effect does not rise to the intrinsic value above pH 8.5; instead, the observed isotope effects at 25 degrees C plotted against pH yield an asymmetric curve that at high pH plateaus at about 1.035. These data, in conjunction with the pH profile of Vmax/km, fit a kinetic model in which an enzyme proton necessary for catalysis is titrated at high pH, thus providing evidence for the catalytic mechanism of Beak and Siegel (1976). 相似文献