首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The 7-valent pneumococcal conjugate vaccine (PCV-7) was introduced in the United Kingdom in 2006 with a 2,3 and 13month schedule, and has led to large decreases in invasive pneumococcal disease (IPD) caused by the vaccine serotypes in both vaccinated and unvaccinated cohorts. We estimated the effectiveness of PCV-7 against IPD.

Methods and Findings

We used enhanced surveillance data, collated at the Health Protection Agency, on vaccine type (n = 153) and non vaccine type (n = 919) IPD cases eligible for PCV-7. The indirect cohort method, a case-control type design which uses non vaccine type cases as controls, was used to estimate effectiveness of various numbers of doses as well as for each vaccine serotype. Possible bias with this design, caused by differential serotype replacement in vaccinated and unvaccinated individuals, was estimated after deriving formulae to quantify the bias. The results showed good effectiveness, increasing from 56% (95% confidence interval (CI): -7-82) for a single dose given under one year of age to 93% (95% CI: 70-98) for two doses under one year of age plus a booster dose in the second year of life. Serotype specific estimates indicated higher effectiveness against serotypes 4, 14 and 18C and lower effectiveness against 6B. Under the assumption of complete serotype replacement by non vaccine serotypes in carriage, we estimated that effectiveness estimates may be overestimated by about 2 to 5%.

Conclusions

This study shows high effectiveness of PCV-7 under the reduced schedule used in the UK. This finding agrees with the large reductions seen in vaccine type IPD in recent years in England and Wales. The formulae derived to assess the bias of the indirect cohort method for PCV-7 can also be used when using the design for other vaccines that affect carriage such as the recently introduced 13 valent pneumococcal conjugate vaccine.  相似文献   

2.
BackgroundThere is limited empiric evidence on the coverage of pneumococcal conjugate vaccines (PCVs) required to generate substantial indirect protection. We investigate the association between population PCV coverage and indirect protection against invasive pneumococcal disease (IPD) and pneumonia hospitalisations among undervaccinated Australian children.Methods and findingsBirth and vaccination records, IPD notifications, and hospitalisations were individually linked for children aged <5 years, born between 2001 and 2012 in 2 Australian states (New South Wales and Western Australia; 1.37 million children). Using Poisson regression models, we examined the association between PCV coverage, in small geographical units, and the incidence of (1) 7-valent PCV (PCV7)-type IPD; (2) all-cause pneumonia; and (3) pneumococcal and lobar pneumonia hospitalisation in undervaccinated children. Undervaccinated children received <2 doses of PCV at <12 months of age and no doses at ≥12 months of age. Potential confounding variables were selected for adjustment a priori with the assistance of a directed acyclic graph.There were strong inverse associations between PCV coverage and the incidence of PCV7-type IPD (adjusted incidence rate ratio [aIRR] 0.967, 95% confidence interval [CI] 0.958 to 0.975, p-value < 0.001), and pneumonia hospitalisations (all-cause pneumonia: aIRR 0.991 95% CI 0.990 to 0.994, p-value < 0.001) among undervaccinated children. Subgroup analyses for children <4 months old, urban, rural, and Indigenous populations showed similar trends, although effects were smaller for rural and Indigenous populations. Approximately 50% coverage of PCV7 among children <5 years of age was estimated to prevent up to 72.5% (95% CI 51.6 to 84.4) of PCV7-type IPD among undervaccinated children, while 90% coverage was estimated to prevent 95.2% (95% CI 89.4 to 97.8). The main limitations of this study include the potential for differential loss to follow-up, geographical misclassification of children (based on residential address at birth only), and unmeasured confounders.ConclusionsIn this study, we observed substantial indirect protection at lower levels of PCV coverage than previously described—challenging assumptions that high levels of PCV coverage (i.e., greater than 90%) are required. Understanding the association between PCV coverage and indirect protection is a priority since the control of vaccine-type pneumococcal disease is a prerequisite for reducing the number of PCV doses (from 3 to 2). Reduced dose schedules have the potential to substantially reduce program costs while maintaining vaccine impact.

In an observational study, Jocelyn Chan and colleagues investigate associations between pneumococcal conjugate vaccine coverage and incidence of invasive pneumococcal disease and pneumonia among children under 5 years in Australia.  相似文献   

3.
Pneumococcal conjugate vaccines (PCVs) have substantially reduced morbidity and mortality of pneumococcal disease. The impact of the 7-valent PCV on all-serotype invasive pneumococcal disease (IPD) among children was reported to vary between high-income countries. We investigate the ability to predict this heterogeneity from pre-vaccination data. We propose a parsimonious model that predicts the impact of PCVs from the odds of vaccine serotype (VT) among carriers and IPD cases in the pre-PCV period, assuming that VT are eliminated in a mature PCV programme, that full serotype replacement occurs in carriage and that invasiveness of the NVT group is unchanged. We test model performance against the reported impact of PCV7 on childhood IPD in high-income countries from a recent meta-analysis. The odds of pre-PCV7 VT IPD, PCV schedule, PCV coverage and whether a catch up campaign was used for introduction was gathered from the same analysis. We conducted a literature review and meta-analysis to obtain the odds of pre-PCV7 VT carriage in the respective settings. The model predicted the reported impact on childhood IPD of mature PCV programmes; the ratio of predicted and observed incidence risk ratios was close to 1 in all settings. In the high income settings studied differences in schedule, coverage, and catch up campaigns were not associated with the observed heterogeneity in impact of PCV7 on childhood all-serotype IPD. The pre-PCV7 proportion of VT IPD alone also had limited predictive value. The pre-PCV7 proportion of VT carriage and IPD are the main determinants for the impact of PCV7 on childhood IPD and can be combined in a simple model to provide predictions of the vaccine preventable burden of IPD.  相似文献   

4.
Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher''s exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines.  相似文献   

5.
A seven-valent pneumococcal conjugate vaccine (PCV7) was introduced in the Danish childhood immunization program (2+1 schedule) in October 2007, followed by PCV13 starting from April 2010. The nationwide incidence of IPD among children younger than 5 years nearly halved after the introduction of PCV7 in the program, mainly due to a decline in IPD caused by PCV7-serotypes. We report the results from a nationwide population-based cohort study of laboratory confirmed IPD cases in children younger than 5 years during October 1, 2007 to December 31, 2010 and describe the characteristics of children suspected to present with a vaccine failure. The period between April 19 and December 31, 2010 was considered a PCV7/PCV13 transitional period, where both vaccines were offered. We identified 45 episodes of IPD caused by a PCV7 serotype (23% of the total number) and 105 (55%) caused by one of the 6 additional serotypes in PCV13. Ten children had received at least one PCV7 dose before the onset of IPD caused by a PCV7 serotype. Seven children were considered to be incompletely vaccinated before IPD, but only three cases fulfilled the criteria of vaccine failure (caused by serotypes 14, 19F and 23F). One case of vaccine failure was observed in a severely immunosuppressed child following three PCV7 doses, and two cases were observed in immunocompetent children following two infant doses before they were eligible for their booster. None of the IPD cases caused by the additional PCV13 serotypes had been vaccinated by PCV13 and there were therefore no PCV13-vaccine failures in the first 8-months after PCV13 introduction in Denmark.  相似文献   

6.

Background

The UK introduced the 7-valent pneumococcal conjugate vaccine (PCV7) into the national vaccination program in September 2006. Previous modelling assumed that the likely impact of PCV7 on invasive pneumococcal disease (IPD) would be similar to the US experience with PCV7. However, recent surveillance data show a more rapid replacement of PCV7 IPD cases by non-PCV7 IPD cases than was seen in the US.

Methods and Findings

A previous model of pneumococcal vaccination was re-parameterised using data on vaccine coverage and IPD from England and Wales between 2006 and 2009. Disease incidence was adjusted for the increasing trend in reported IPD cases prior to vaccination. Using this data we estimated that individuals carrying PCV7 serotypes have much higher protection (96%;95% CI 72%-100%) against acquisition of NVT carriage than the 15% previously estimated from US data, which leads to greater replacement. However, even with this level of replacement, the annual number of IPD cases may be 560 (95% CI, -100 to 1230) lower ten years after vaccine introduction compared to what it may have been without vaccination. A particularly marked fall of 39% in children under 15 years by 2015/6 is predicted.

Conclusion

Our model suggests that PCV7 vaccination could result in a decrease in overall invasive pneumococcal disease, particularly in children, even in an environment of rapid replacement with non-PCV7 serotypes within 5 years of vaccine introduction at high coverage.  相似文献   

7.

Background

In 2008, a 7-valent pneumococcal conjugate vaccine (PCV7) was introduced into the routine childhood immunization program in Uruguay, with a 2+1 schedule. In 2010, PCV13 replaced PCV7, and the same 2+1 schedule was used. The effect of these pneumococcal vaccines on the incidence of invasive pneumococcal infections (IPD) and on serotype distribution was analyzed retrospectively, based on passive national laboratory surveillance.

Methods

Data from 1,887 IPD isolates from 5 years before and 5 years after PCV7 introduction (7 before and 3 after PCV13 introduction) was examined to assess the incidence rate per 100,000 age-specific population of all IPD, PCV7-serotypes, and PCV13-serotypes associated IPD among children <2 years and 2 to 4 years old, and patients ≥5 years old. Trends of frequency for each serotype were also analyzed.

Results

Comparison of pre-vaccination (2003–2007) and post-vaccination (2008–2012) periods showed a significant decrease in IPD incidence among children <2 years old (IR 68.7 to IR 29.6, p<0.001) and children 2 to 4 years (p<0.04). IPD caused by serotypes in PCV7 was reduced by 95.6% and IPD caused by 6 serotypes added in PCV13 was reduced by 83.9% in children <5 years old. Indirect effects of both conjugate vaccines were observed among patients ≥5 years old one year after the introduction of each vaccine, in 2010 for PCV7 and in 2012 for PCV13. Nevertheless, for reasons that still need to be explained, perhaps due to ascertainment bias, total IPD in this group increased after 2007. In 2012, the relative frequency of vaccine serotypes among vaccinated and unvaccinated population declined, except for serotype 3. Non vaccine serotypes with increasing frequency were identified, in rank order: 12F, 8, 24F, 22F, 24A, 15C, 9N, 10A and 33.

Conclusion

Consecutive immunization with PCV7 and PCV13 has significantly reduced IPD in children <5 years of age in Uruguay.  相似文献   

8.

Background

The ten-valent pneumococcal conjugate vaccine (PCV10) was introduced into the Finnish National Vaccination Program (NVP) in September 2010 with a 2+1 schedule (3, 5, 12 months) without catch-up vaccinations. We evaluated the direct and indirect effects of PCV10 on invasive pneumococcal disease (IPD) among children ≤5 years of age during the first three years after NVP introduction.

Methods

We conducted a population-based, observational follow-up study. The cohort of vaccine-eligible children (all children born June 1, 2010 or later) was followed from 3 months of age until the end of 2013. For the indirect effect, another cohort of older children ineligible for PCV10 vaccination was followed from 2011 through 2013. Both cohorts were compared with season- and age-matched reference cohorts before NVP introduction. National, population-based laboratory surveillance data were used to compare culture-confirmed serotype-specific IPD rates in the vaccine target and reference cohorts by using Poisson regression models.

Results

The overall IPD rate among vaccine-eligible children was reduced by 80% (95%CI 72 to 85); the reduction in vaccine-type IPD was 92% (95%CI 86 to 95). However, a non-significant increase in non-vaccine type IPD was observed. During 2012–2013, we also observed a 48% (95%CI 18 to 69) reduction in IPD among unvaccinated children 2 to 5 years of age, which was mostly attributable to the ten vaccine serotypes.

Conclusions

This is the first population-based study investigating the impact of PCV10 introduction without prior PCV7 use. A substantial decrease in IPD rates among vaccine-eligible children was observed. A smaller and temporally delayed reduction among older, unvaccinated children suggests that PCV10 also provides indirect protection against vaccine-type IPD. Changes in serotype distribution warrant continuous monitoring of potential increases in non-vaccine serotypes.  相似文献   

9.
BackgroundThe recommendations in several countries to stop using the ChAdOx1 vaccine has led to vaccine programs combining different Coronavirus Disease 2019 (COVID-19) vaccine types, which necessitates knowledge on vaccine effectiveness (VE) of heterologous vaccine schedules. The aim of this Danish nationwide population-based cohort study was therefore to estimate the VE against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and COVID-19–related hospitalization and death following the first dose of the ChAdOx1 vaccine and the combination of the ChAdOx1/mRNA vaccines.Methods and findingsAll individuals alive in or immigrating to Denmark from 9 February 2021 to 23 June 2021 were identified in the Danish Civil Registration System. Information on exposure, outcomes, and covariates was obtained from Danish national registries. Poisson and Cox regression models were used to calculate crude and adjusted VE, respectively, along with 95% confidence intervals (CIs) against SARS-CoV-2 infection and COVID-19–related hospitalization or death comparing vaccinated versus unvaccinated individuals. The VE estimates were adjusted for calendar time as underlying time and for sex, age, comorbidity, country of origin, and hospital admission. The analyses included 5,542,079 individuals (97.6% of the total Danish population). A total of 144,360 individuals were vaccinated with the ChAdOx1 vaccine as the first dose, and of these, 136,551 individuals received an mRNA vaccine as the second dose. A total of 1,691,464 person-years and 83,034 SARS-CoV-2 infections were included. The individuals vaccinated with the first dose of the ChAdOx1 vaccine dose had a median age of 45 years. The study population was characterized by an equal distribution of males and females; 6.7% and 9.2% originated from high-income and other countries, respectively. The VE against SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine was 88% (95% CI: 83; 92) 14 days after the second dose and onwards. There were no COVID-19–related hospitalizations or deaths among the individuals vaccinated with the combined vaccine schedule during the study period. Study limitations including unmeasured confounders such as risk behavior and increasing overall vaccine coverage in the general population creating herd immunity are important to take into consideration when interpreting the results.ConclusionsIn this study, we observed a large reduction in the risk of SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine, compared with unvaccinated individuals.

Mie Agermose Gram and co-workers study the effectiveness of heterologous SARS-CoV-2 vaccine combinations in the Danish population.  相似文献   

10.

Background

Recently a large clinical trial showed that the use of 13-valent pneumococcal conjugate vaccine (PCV13) among immunocompetent individuals aged 65 years and over was safe and efficacious. The aim of this study was to assess the cost-effectiveness of vaccinating immunocompetent 65 year olds with PCV13 vaccine in England. England is a country with universal childhood pneumococcal conjugate vaccination programme in place (7-valent (PCV7) since 2006 and PCV13 since 2010), as well as a 23-valent pneumococcal polysaccharide (PPV23) vaccination programme targeting clinical risk-groups and those ≥65 years.

Method

A static cohort cost-effectiveness model was developed to follow a cohort of 65 year olds until death, which will be vaccinated in the autumn of 2016 with PCV13. Sensitivity analysis was performed to test the robustness of the results.

Results

The childhood vaccination programme with PCV7 has induced herd protection among older unvaccinated age groups, with a resultant low residual disease burden caused by PCV7 vaccine types. We show similar herd protection effects for the 6 additional serotypes included in PCV13, and project a new low post-introduction equilibrium of vaccine-type disease in 2018/19. Applying these incidence projections for both invasive disease and community-acquired pneumonia (CAP), and using recent measures of vaccine efficacy against these endpoints for ≥65 year olds, we estimate that vaccination of a cohort of immunocompetent 65 year olds with PCV13 would directly prevent 26 cases of IPD, 69 cases of CAP and 15 deaths. The associated cost-effectiveness ratio is £257,771 per QALY gained (using list price of £49.10 per dose and £7.51 administration costs) and is therefore considered not cost-effective. To obtain a cost-effective programme the price per dose would need to be negative. The results were sensitive to disease incidence, waning vaccine protection and case fatality rate; despite this, the overall conclusion was robust.

Conclusions

Vaccinating immunocompetent individuals aged ≥65 years with PCV13 is efficacious. However the absolute incidence of vaccine-type disease will likely become very low due to wider benefits of the childhood PCV13 vaccination programme, such that a specific PCV13 vaccination programme targeting the immunocompetent elderly would not be cost-effective.  相似文献   

11.
BACKGROUND: Estimation of Influenza vaccine effectiveness (VE) varies with study design, clinical outcome considered and statistical methodology used. By estimating VE using differing outcomes and statistical methods on the same cohort of individuals the variability in the estimates produced can be better understood. The Pandemic Influenza Primary Care Reporting (PIPeR) cohort of approximately 193,000 individuals was used to estimate pandemic VE in Scotland during season 2009-10. VE results for three outcomes; influenza related consultations, virological confirmed influenza and death were considered. Use of individualised records allowed all models to be adjusted for age, sex, deprivation, risk status relating to chronic illnesses, seasonal vaccination status and a marker of the individual's propensity to consult. For the consultation and death outcomes, VE was calculated by comparing consultation rates in the unvaccinated and vaccinated groups, adjusted for the listed factors, using both Cox and Poisson regression models. For the consultation outcome, the unvaccinated group was split into individuals before vaccination and those never vaccinated to allow for potential differences in the health seeking behaviour of these groups. For the virology outcome estimates were calculated using a generalised additive logistic regression model. All models were adjusted for time. Vaccine effect was demonstrated for the influenza-like illness consultation outcome using the Cox model (VE=49% 95% CI (19%, 67%)) with lower estimates from the model splitting the before and never vaccinated groups (VE=34.2% with 95% CI (-0.5%, 58.9%)). Vaccine effect was also illustrated for overall mortality (VE=40% (95% CI 18%, 56%)) and a virological confirmed subset of symptomatic individuals (VE=60% (95% CI -38%, 89%)). CONCLUSIONS: This study illustrates positive point estimates of Influenza VE across methodology and outcome for a single cohort of individuals during season 2009-10. Understanding of potential differences between approaches aids interpretation of VE results in future seasons.  相似文献   

12.
Pneumococcus is the leading cause of bacterial illness in children worldwide. The development, clinical evaluation, and postlicensure impact of the pneumococcal CRM(197) protein conjugate vaccine, PCV13, (Prevnar 13?) builds upon the excellent safety and substantial effectiveness of PCV7 (Prevnar?) in preventing pneumococcal disease in children. PCV13 adds pneumococcal serotypes 1, 3, 5, 6A, 7F, and 19A to serotypes 4, 6B, 9V, 14, 18C, 19F, 23F in PCV7 to provide comprehensive coverage for over 85% of epidemiologically important pneumococcal serotypes in the United States and throughout the world. PCV13 development required demonstration of immunologic responses to the 13 serotypes contained in the vaccine that were noninferior to the responses elicited by PCV7, and demonstration of a satisfactory safety profile. Studies were also performed to demonstrate compatibility with other childhood vaccines. Now licensed in many countries worldwide, PCV13 shows significant promise for expanded protection against pneumococcal disease in children.  相似文献   

13.
BackgroundData on the national-level impact of pneumococcal conjugate vaccine (PCV) introduction on mortality are lacking from Africa. PCV was introduced in South Africa in 2009. We estimated the impact of PCV introduction on all-cause pneumonia mortality in South Africa, while controlling for changes in mortality due to other interventions.Methods and findingsWe used national death registration data in South Africa from 1999 to 2016 to assess the impact of PCV introduction on all-cause pneumonia mortality in all ages, with the exclusion of infants aged <1 month. We created a composite (synthetic) control using Bayesian variable selection of nondiarrheal, nonpneumonia, and nonpneumococcal deaths to estimate the number of expected all-cause pneumonia deaths in the absence of PCV introduction post 2009. We compared all-cause pneumonia deaths from the death registry to the expected deaths in 2012 to 2016. We also estimated the number of prevented deaths during 2009 to 2016. Of the 9,324,638 deaths reported in South Africa from 1999 to 2016, 12·6% were pneumonia-related.Compared to number of deaths expected, we estimated a 33% (95% credible interval (CrI) 26% to 43%), 23% (95%CrI 17% to 29%), 25% (95%CrI 19% to 32%), and 23% (95%CrI 11% to 32%) reduction in pneumonia mortality in children aged 1 to 11 months, 1 to 4 years, 5 to 7 years, and 8 to 18 years in 2012 to 2016, respectively. In total, an estimated 18,422 (95%CrI 12,388 to 26,978) pneumonia-related deaths were prevented from 2009 to 2016 in children aged <19 years. No declines were estimated observed among adults following PCV introduction. This study was mainly limited by coding errors in original data that could have led to a lower impact estimate, and unmeasured factors could also have confounded estimates.ConclusionsThis study found that the introduction of PCV was associated with substantial reduction in all-cause pneumonia deaths in children aged 1 month to <19 years. The model predicted an effect of PCV in age groups who were eligible for vaccination (1 months to 4 years), and an indirect effect in those too old (8 to 18 years) to be vaccinated. These findings support sustaining pneumococcal vaccination to reduce pneumonia-related mortality in children.

Jackie Kleynhans and colleagues investigate whether introduction of the pneumococcal conjugate vaccine may have reduced all-cause pneumonia mortality in South Africa.  相似文献   

14.

Background

The degree and time frame of indirect effects of vaccination (serotype replacement and herd immunity) are key determinants in assessing the net effectiveness of vaccination with pneumococcal conjugate vaccines (PCV) in control of pneumococcal disease. Using modelling, we aimed to quantify these effects and their dependence on coverage of vaccination and the vaccine''s efficacy against susceptibility to pneumococcal carriage.

Methods and Findings

We constructed an individual-based simulation model that explores the effects of large-scale PCV programmes and applied it in a developed country setting (Finland). A population structure with transmission of carriage taking place within relevant mixing groups (families, day care groups, schools and neighbourhoods) was considered in order to properly assess the dependency of herd immunity on coverage of vaccination and vaccine efficacy against carriage. Issues regarding potential serotype replacement were addressed by employing a novel competition structure between multiple pneumococcal serotypes. Model parameters were calibrated from pre-vaccination data about the age-specific carriage prevalence and serotype distribution. The model predicts that elimination of vaccine-type carriage and disease among those vaccinated and, due to a substantial herd effect, also among the general population takes place within 5–10 years since the onset of a PCV programme with high (90%) coverage of vaccination and moderate (50%) vaccine efficacy against acquisition of carriage. A near-complete replacement of vaccine-type carriage by non-vaccine-type carriage occurs within the same time frame.

Conclusions

The changed patterns in pneumococcal carriage after PCV vaccination predicted by the model are unequivocal. The overall effect on disease incidence depends crucially on the magnitude of age- and serotype-specific case-to-carrier ratios of the remaining serotypes relative to those of the vaccine types. Thus the availability of reliable data on the incidence of both pneumococcal carriage and disease is essential in assessing the net effectiveness of PCV vaccination in a given epidemiological setting.  相似文献   

15.

Background

The seven-valent pneumococcal conjugate vaccine (PCV-7) was introduced in the Danish childhood immunization program (at 3, 5 and 12 months of age) in 2007 and was replaced with PCV-13 in 2010 without changes to the schedule. After the introduction of these vaccines the incidence of invasive pneumococcal disease (IPD) due to vaccine types (VTs) declined markedly in children aged 0–2 years; however, cases among infants too young to be protected by vaccination have not been studied in detail. We present data on IPD in infants less than 90 days from 1943 until 2013.

Study design

The study included all infants younger than 90 days born from 1943 through 2013, who had not been PCV vaccinated and from whom a pneumococcus isolate from blood or cerebrospinal fluid had been submitted to the Danish national reference laboratory. All isolates were serotyped using Pneumotest Latex and Quellung reaction.

Results

A total of 216 IPD cases were identified. The age group specific incidence (total number of IPD cases per 100,000 live births) varied from 0 to 16 in the period 1943 to 2007 and from 1.7 to 9.2 in the period 2008 to 2013. IPD cases due to PCV-7 serotypes were not observed later than 2009.

Conclusion

In Danish infants younger than 90 days, IPD due to PCV-7 serotypes has decreased and has not been observed since 2009, but the total incidence of IPD has not changed.  相似文献   

16.

Introduction

Streptococcus pneumoniae is the commonest cause of bacteremic pneumonia among HIV-infected persons. As more countries with high HIV prevalence are implementing infant pneumococcal conjugate vaccine (PCV) programs, we aimed to describe the baseline clinical characteristics of adult invasive pneumococcal disease (IPD) in the pre-PCV era in South Africa in order to interpret potential indirect effects following vaccine use.

Methods

National, active, laboratory-based surveillance for IPD was conducted in South Africa from 1 January 2003 through 31 December 2008. At 25 enhanced surveillance (ES) hospital sites, clinical data, including HIV serostatus, were collected from IPD patients ≥ 5 years of age. We compared the clinical characteristics of individuals with IPD in those HIV-infected and -uninfected using multivariable analysis. PCV was introduced into the routine South African Expanded Program on Immunization (EPI) in 2009.

Results

In South Africa, from 2003–2008, 17 604 cases of IPD occurred amongst persons ≥ 5 years of age, with an average incidence of 7 cases per 100 000 person-years. Against a national HIV-prevalence of 18%, 89% (4190/4734) of IPD patients from ES sites were HIV-infected. IPD incidence in HIV-infected individuals is 43 times higher than in HIV-uninfected persons (52 per 100 000 vs. 1.2 per 100 000), with a peak in the HIV-infected elderly population of 237 per 100 000 persons. Most HIV-infected individuals presented with bacteremia (74%, 3 091/4 190). HIV-uninfected individuals were older; and had more chronic conditions (excluding HIV) than HIV-infected persons (39% (210/544) vs. 19% (790/4190), p<0.001). During the pre-PCV immunization era in South Africa, 71% of serotypes amongst HIV-infected persons were covered by PCV13 vs. 73% amongst HIV-uninfected persons, p = 0.4, OR 0.9 (CI 0.7–1.1).

Conclusion

Seventy to eighty-five percent of adult IPD in the pre-PCV era were vaccine serotypes and 93% of cases had recognized risk factors (including HIV-infection) for pneumococcal vaccination. These data describe the epidemiology of IPD amongst HIV-infected and -uninfected adults during the pre-PCV era and provide a robust baseline to calculate the indirect effect of PCV in future studies.  相似文献   

17.

Background

Adult invasive pneumococcal disease (IPD) occurs mainly in the elderly and patients with co-morbidities. Little is known about the clinical characteristics, serotypes and genotypes causing IPD in healthy adults.

Methods

We studied 745 culture-proven cases of IPD in adult patients aged 18–64 years (1996–2010). Patients were included in two groups: 1.) adults with co-morbidities, and 2.) healthy adults, who had no prior or coincident diagnosis of a chronic or immunosuppressive underlying disease. Microbiological studies included pneumococcal serotyping and genotyping.

Results

Of 745 IPD episodes, 525 (70%) occurred in patients with co-morbidities and 220 (30%) in healthy adults. The healthy adults with IPD were often smokers (56%) or alcohol abusers (18%). As compared to patients with co-morbidities, the healthy adults had (P<0.05): younger age (43.5+/−13.1 vs. 48.7+/−11.3 years); higher proportions of women (45% vs. 24%), pneumonia with empyema (15% vs. 7%) and infection with non-PCV7 serotypes including serotypes 1 (25% vs. 5%), 7F (13% vs. 4%), and 5 (7% vs. 2%); and lower mortality (5% vs. 20%). Empyema was more frequently caused by serotype 1. No death occurred among 79 patients with serotype 1 IPD. There was an emergence of virulent clonal-types Sweden1-ST306 and Netherlands7F-ST191. The vaccine serotype coverage with the PCV13 was higher in healthy adults than in patients with co-morbidities: 82% and 56%, respectively, P<0.001.

Conclusion

In this clinical study, one-third of adults with IPD had no underlying chronic or immunosuppressive diseases (healthy adults). They were often smokers and alcohol abusers, and frequently presents with pneumonia and empyema caused by virulent clones of non-PCV7 serotypes such as the Sweden1-ST306. Thus, implementing tobacco and alcohol abuse-cessation measures and a proper pneumococcal vaccination, such as PCV13 policy, in active smokers and alcohol abusers may diminish the burden of IPD in adults.  相似文献   

18.
This study presents serogroup 6 isolates from invasive pneumococcal disease (IPD) before and after the recommendation for childhood pneumococcal conjugate vaccination in Germany (July 2006). A total of 19,299 (children: 3508, adults: 15,791) isolates were serotyped. Serogroup 6 isolates accounted for 9.5% (children) and 6.7% (adults), respectively. 548 isolates had serotype 6A, 558 had serotype 6B, 285 had serotype 6C, and 4 had serotype 6D. Among children, serotype 6B was most prevalent (7.5% of isolates) before vaccination, followed by 6A and 6C. After the 7-valent pneumococcal conjugate vaccine (PCV7), the prevalence of serotype 6B significantly decreased (p = 0.040), a pattern which continued in the higher-valent PCV period (PCV10, PCV13). Serotype 6A prevalence showed a slight increase directly after the start of PCV7 vaccination, followed by a decrease which continued throughout the PCV10/13 period. Serotype 6C prevalence remained low. Serotype 6D was not found among IPD isolates from children. Among adults, prevalence of both 6A and 6B decreased, with 6B reaching statistical significance (p = 0.045) and 6A showing a small increase in 2011–2012. Serotype 6C prevalence was 1.5% or lower before vaccination, but increased post-vaccination to 3.6% in 2011/12 (p = 0.031). Four serotype 6D isolates were found post-PCV7 childhood vaccination, and two post-PCV10/13. Antibiotic resistance was found mainly in serotype 6B; serotype 6A showed lower resistance rates. Serotype 6C isolates only showed resistance among adults; serotype 6D isolates showed no resistance. Multilocus sequence typing showed that sequence type (ST) 1692 was the most prevalent serotype 6C clone. Thirty-two other STs were found among serotype 6C isolates, of which 12 have not been previously reported. The four serotype 6D isolates had ST 948, ST 2185 and two new STs: 8422 and 8442. Two serogroup 6 isolates could not be assigned to a serotype, but had STs common to serogroup 6.  相似文献   

19.
A baseline serotype distribution was established by age and region for 2058 invasive Streptococcus pneumoniae isolates collected during the implementation period of the 13-valent pneumococcal conjugate vaccine (PCV13) program in many parts of Canada in 2010. Serotypes 19A, 7F, and 3 were the most prevalent in all age groups, accounting for 57% in <2 year olds, 62% in 2-4 year olds, 45% in 5-14?year olds, 44% in 15-49?year olds, 41% in 50-64?year olds, and 36% in ≥65?year olds. Serotype 19A was most predominant in Western and Central Canada representing 15% and 22%, respectively, of the isolates from those regions, whereas 7F was most common in Eastern Canada with 20% of the isolates. Other prevalent serotypes include 15A, 23B, 12F, 22F, and 6C. PCV13 serotypes represented 65% of the pneumococci isolated from?<2 year olds, 71% of 2-4 year olds, 61% of 5-14 year olds, 60% of 15-49 year olds, 53% of 50-64 year olds, and 49% of the?≥65?year olds. Continued monitoring of invasive pneumococcal serotypes in Canada is important to identify epidemiological trends and assess the impact of the newly introduced PCV13 vaccine on public health.  相似文献   

20.
BackgroundThe ten-valent pneumococcal conjugate vaccine (PCV10) was introduced into the Chilean National Immunization Program (NIP) in January 2011 with a 3+1 schedule (2, 4, 6 and 12 months) without catch-up vaccination. We evaluated the effectiveness of PCV10 on pneumonia morbidity and mortality among infants during the first two years after vaccine introduction.MethodsThis is a population-based nested case-control study using four merged nationwide case-based electronic health data registries: live birth, vaccination, hospitalization and mortality. Children born in 2010 and 2011 were followed from two moths of age for a period of two years. Using four different case definitions of pneumonia hospitalization and/or mortality (all-cause and pneumonia related deaths), all cases and four randomly selected matched controls per case were selected. Controls were matched to cases on analysis time. Vaccination status was then assessed. Vaccine effectiveness (VE) was estimated using conditional logistic regression.ResultsThere were a total of 497,996 children in the 2010 and 2011 Chilean live-birth cohorts. PCV10 VE was 11.2% (95%CI 8.5–13.6) when all pneumonia hospitalizations and deaths were used to define cases. VE increased to 20.7 (95%CI 17.3–23.8) when ICD10 codes used to denote viral pneumonia were excluded from the case definition. VE estimates on pneumonia deaths and all-cause deaths were 71.5 (95%CI 9.0–91.8) and 34.8 (95% CI 23.7–44.4), respectively.ConclusionPCV10 vaccination substantially reduced the number of hospitalizations due to pneumonia and deaths due to pneumonia and to all-causes over this study period. Our findings also reinforce the importance of having quality health information systems for measuring VE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号