首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
Human CD4+CD25+FoxP3+ T regulatory cells (Tregs) control effector T cells and play a central role in peripheral tolerance and immune homeostasis. Heat shock protein 70 (HSP70) is a major immunomodulatory molecule, but its effect on the functions of Tregs is not well understood. To investigate target-dependent and –independent Treg functions, we studied cytokine expression, regulation of proliferation and cytotoxicity after exposure of Tregs to HSP70. HSP70-treated Tregs significantly inhibited proliferation of CD4+CD25 target cells and downregulated the secretion of the proinflammatory cytokines IFN-γ and TNF-α. By contrast, HSP70 increased the secretion of Treg suppressor cytokines IL-10 and TGF-β. Treatment with HSP70 enhanced the cytotoxic properties of Tregs only to a minor extent (4-fold), but led to stronger responses in CD4+CD25 cells (42-fold). HSP70-induced modulation of T-cell responses was further enhanced by combined treatment with HSP70 plus IL-2. Treatment of Tregs with HSP70 led to phosphorylation of PI3K/AKT and the MAPKs JNK and p38, but not that of ERK1/2. Exposure of Tregs to specific inhibitors of PI3K/AKT and the MAPKs JNK and p38 reduced the immunosuppressive function of HSP70-treated Tregs as indicated by the modified secretion of specific target cell (IFN-γ, TNF-α) and suppressor cytokines (IL-10, TGF-β). Taken together, the data show that HSP70 enhances the suppressive capacity of Tregs to neutralize target immune cells. Thus HSP70-enhanced suppression of Tregs may prevent exaggerated immune responses and may play a major role in maintaining immune homeostasis.  相似文献   

2.
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor immunobiology, a simple mathematical model was formulated and studied. This model is an extension of a previous model for the dynamics of autoreactive regulatory cells and effector cells that interact upon their co-localized activation at the antigen presenting cells (APCs). It assumes that tumor growth stimulates the activation and migration to the adjacent lymph node of fresh APCs loaded with tumor antigens. These APCs stimulate the growth of both effector and regulatory T cells, which may then migrate to the tumor site and induce tumor cell destruction. Our results predict the existence of two alternative dynamic modes of unbounded tumor growth. In the first mode, the tumor induces the expansion of effector T cells that outcompete regulatory T cells, but nevertheless fail to control the tumor. In the second mode, the tumor induces a balanced expansion of both effector and regulatory T cells, which prevents the tumor from being destroyed by the immune cells. Tumors characterized by a high specific growth rate, low immunogenicity, and that are relatively resistant to T cell destructive functions, will grow in the first mode; conversely, tumors that have a slow specific growth rate, that are immunogenic, and/or that are more sensitive to destruction by T cells will grow in the second mode. Overall, this result provides a simple explanation to the fact that the development of some tumors expands regulatory T cells while others do not, predicting how some key dynamical properties of the tumor determine either one or the other type of behavior.  相似文献   

3.
The blood CD4+ CXCR5+ T cells, known as “circulating” Tfh, have been shown to efficiently induce naïve B cells to produce immunoglobulin. They play an important role in certain autoimmune diseases. In the present study, we show for the first time that the frequency of CD4+ CXCR5+ T cells is increased in pSS patients and positively correlated with autoantibodies in the blood. The concentration of Th17-like subsets (CD4+ CXCR5+ CCR6+) in pSS patients was found to be significantly higher than in healthy controls. Functional assays showed that activated Th17-like subtypes in the blood display the key features of Tfh cells, including invariably coexpressed PD-1, ICOS, CD40L and IL-21. Th17 subsets were found to highly express Bcl-6 protein and Th1 and Th2 were not. Bcl-6 is believed to be a master transforming factor for Tfh cell differentiation and facilitate B cell proliferation and somatic hypermutation within the germinal center. These data indicate that Th17 subsets of CD4+ CXCR5+ T cells in the blood may participate in the antibody-related immune responses and that high frequency of CD4+ CXCR5+ CCR6+ Tfh cells in blood may be suitable biomarkers for the evaluation of the active immune stage of pSS patients. It might provide insights into the pathogenesis and perhaps help researchers identify novel therapeutic targets for pSS.  相似文献   

4.
5.
6.
Helicobacter pylori is recognised as a causal agent in the pathogenesis of gastritis, gastric and duodenal ulcer disease as well as gastric cancers. Eradication of the bacteria with antibiotics is currently used to treat symptomatic, infected individuals. Theoretically the infection could also be controlled by vaccination. Several immunisation protocols were developed in small animal models and primates in order to validate this approach. Recently making use of mice with defined genetic defects, H. pylori-specific CD4(+) T cells were found to be crucial for protective vaccination. This was unexpected and poses the question of how activation of CD4(+) T cells leads to the elimination of bacteria that reside primarily in the mucin layer behind a barrier of epithelial cells. CD4(+) T cells fulfil their effector function by secreting lymphokines and by engaging specific surface ligands on interacting cells. Here we propose that phagocytes and epithelial cells stimulated either by direct interaction with CD4(+) T cells or by soluble mediators such as cytokines or neuropeptides are the ultimate effector populations in protective immunity induced by vaccination.  相似文献   

7.
Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1α and MIP-1β mRNA, resulting in a rapid increase in production of MIP-1α and MIP-1β after cognate antigen stimulation. Production of β-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of β-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1β contained 10 times less Gag DNA than did those which failed to produce MIP-1β. These data suggest that CD4+ T cells which produce MIP-1α and MIP-1β bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.  相似文献   

8.

Background

Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research.

Methods and Findings

Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice.

Conclusion/Significance

Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.  相似文献   

9.
Infection with the human immunodeficiency virus (HIV) causes a gradual decline in essential immune-system cells called CD4(+)"helper" T cells. These cells are also principal viral targets, but, paradoxically, direct cell-killing does not explain their disappearance. HIV also induces a chronic and increasing state of immune activation. In a mathematical model of normal T-cell kinetics incorporating a cytokine growth factor, increased activation alone explains these T-cell losses, a switch from "na?ve" to "memory" phenotype, and certain other features of HIV disease.  相似文献   

10.
Recent findings have demonstrated an indispensable role for GM-CSF in the pathogenesis of experimental autoimmune encephalomyelitis. However, the signaling pathways and cell populations that regulate GM-CSF production in vivo remain to be elucidated. Our work demonstrates that IL-1R is required for GM-CSF production after both TCR- and cytokine-induced stimulation of immune cells in vitro. Conventional αβ and γδ T cells were both identified to be potent producers of GM-CSF. Moreover, secretion of GM-CSF was dependent on IL-1R under both IL-12- and IL-23-induced stimulatory conditions. Deficiency in IL-1R conferred significant protection from experimental autoimmune encephalomyelitis, and this correlated with reduced production of GM-CSF and attenuated infiltration of inflammatory cells into the CNS. We also find that GM-CSF production in vivo is not restricted to a defined CD4(+) T cell lineage but is rather heterogeneously expressed in the effector CD4(+) T cell population. In addition, inflammasome-derived IL-1β upstream of IL-1R is a critical regulator of GM-CSF production by T cells during priming, and the adapter protein, MyD88, promotes GM-CSF production in both αβ and γδ T cells. These findings highlight the importance of inflammasome-derived IL-1β and the IL-1R/MyD88 signaling axis in the regulation of GM-CSF production.  相似文献   

11.
12.
13.
In January 2010 two groups independently published the observation that the depletion of CD8+ cells in SIV-infected macaques had no detectable impact on the lifespan of productively infected cells. This unexpected observation led the authors to suggest that CD8+ T cells control SIV viraemia via non-lytic mechanisms. However, a number of alternative plausible explanations, compatible with a lytic model of CD8+ T cell control, were proposed. This left the field with no consensus on how to interpret these experiments and no clear indication whether CD8+ T cells operated primarily via a lytic or a non-lytic mechanism. The aim of this work was to investigate why CD8+ T cells do not appear to reduce the lifespan of SIV-infected cells in vivo.  相似文献   

14.
Luo L  Li C  Wu W  Lu J  Shan J  Li S  Long D  Guo Y  Feng L  Li Y 《Cellular immunology》2012,273(1):85-93
The ability of DCs to induce immune tolerance depends on its maturation status. RelB plays a pivotal role in DCs differentiation. A therapeutic protocol of DCs-based not only induces hyporesponsiveness in T(N)s, but also in alloreactive T(M)s is required. Thus, it is urgent to assess modulatory effects of RelB-silenced DCs on T(M)s and T(N)s. In this study, we constructed lentiviral vector which could efficiently silenced the RelB in DCs (DCs-miR RelB) to keep them immature. These DCs induced antigen-specific hyporesponsiveness in CD4(+) T(N)s. In contrast, upon re-stimulation with mature DCs, CD4(+) T(M)s primed by DCs-miR RelB maintained hyporesponsiveness in terms of proliferation and cytokine production. And these may be associated with micro155 and micro181a expression levels in T(M)s and T(N)s. These results may help developing the DCs-based therapeutical protocols by inducing hyporesponsiveness in CD4(+) T(N)s and T(M)s.  相似文献   

15.
Both CD4(+) and CD8(+) T cells contribute to immunity to tuberculosis, and both can produce the essential effector cytokine IFN-γ. However, the precise role and relative contribution of each cell type to in vivo IFN-γ production are incompletely understood. To identify and quantitate the cells that produce IFN-γ at the site of Mycobacterium tuberculosis infection in mice, we used direct intracellular cytokine staining ex vivo without restimulation. We found that CD4(+) and CD8(+) cells were predominantly responsible for production of this cytokine in vivo, and we observed a remarkable linear correlation between the fraction of CD4(+) cells and the fraction of CD8(+) cells producing IFN-γ in the lungs. In the absence of CD4(+) cells, a reduced fraction of CD8(+) cells was actively producing IFN-γ in vivo, suggesting that CD4(+) effector cells are continually required for optimal IFN-γ production by CD8(+) effector cells. Accordingly, when infected mice were treated i.v. with an MHC-II-restricted M. tuberculosis epitope peptide to stimulate CD4(+) cells in vivo, we observed rapid activation of both CD4(+) and CD8(+) cells in the lungs. Indirect activation of CD8(+) cells was dependent on the presence of CD4(+) cells but independent of IFN-γ responsiveness of the CD8(+) cells. These data provide evidence that CD4(+) cell deficiency impairs IFN-γ production by CD8(+) effector cells and that ongoing cross-talk between distinct effector T cell types in the lungs may contribute to a protective immune response against M. tuberculosis. Conversely, defects in these interactions may contribute to susceptibility to tuberculosis and other infections.  相似文献   

16.
17.
18.
CD4~ CD25~ T cells play a major role in modulating immune response,but few reports havebeen published about schistosomiasis.Here,we investigated the changes in CD4~ CD25~ T cell populations inspleens and mesenteric lymph nodes of mice infected with Schistosoma japonicum.The proportions ofCD4~ CD25~ T cells in total CD4~ T cells were analyzed by flow cytometry.CD25 and Foxp3 expression wasmeasured by real-time quantitative polymerase chain reaction.The suppressive activities of CD4~ CD25~ Tcells were detected by in vitro proliferation of splenocytes.Evidence showed that the percentage of CD4~ CD25~ T cells was the same as controls 3 weeks post-infection.At the acute stage of infection,the percentagedecreased significantly.However,at the chronic stage of infection,it rebounded to normal levels or evenhigher.The expression of the CD25 and Foxp3 showed gradual increase along with the infection progress.Invitro experiment also showed the strong suppressive effect of CD4~ CD25~ T cells,isolated during the chronicstage,on proliferation of the CD25~-splenocytes.This is the first time that the dynamics of CD4~ CD25~ T cellpopulations was demonstrated in mice infected with schistosomiasis.In conclusion,our data indicated thatCD4~ CD25~ cells might be involved in the immune modulation during S.japonicum infection,which en-hances current knowledge of the mechanisms of the immuno-downregulation and re-infection inschistosomiasis.  相似文献   

19.
CD137^(+)(又称4-1BB、TNFRSF9)T细胞亚群是一类抗原特异性活化的效应细胞。CD137^(+)T细胞产生细胞毒效应因子以及在抗原刺激后进行增殖的能力较强,使其在多种疾病中发挥免疫调节作用,其中CD137^(+)调节性T细胞分泌的分泌型CD137具有重要的免疫抑制作用。因此,全面了解CD137^(+)T细胞在疾病中的作用,对开发有效的疾病免疫防治策略至关重要。本文通过介绍CD137相关信号对T细胞尤其是CD8^(+)T细胞功能的调控机制、CD137^(+)T细胞的特征和效应功能、CD137^(+)T细胞在多种疾病进展中的免疫调控作用,为靶向CD137^(+)T细胞的免疫治疗提供参考。  相似文献   

20.

Introduction  

CD25+ FOXP3+ CD4+ regulatory T cells (Tregs) are induced by transforming growth factor β (TGFβ) and further expanded by retinoic acid (RA). We have previously shown that this process was defective in T cells from lupus-prone mice expressing the novel isoform of the Pbx1 gene, Pbx1-d. This study tested the hypothesis that CD4+ T cells from systemic lupus erythematosus (SLE) patients exhibited similar defects in Treg induction in response to TGFβ and RA, and that PBX1-d expression is associated with this defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号