首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion boundary between apparently healthy tissue and exposed white skeleton. Surveys of eight sites around Heron Reef in 2004 revealed a mean prevalence of 8.1±0.9%, affecting the three common species (Acropora cytherea, A. hyacinthus, A. clathrata) and nine other tabular Acropora spp. While all sizes of colonies were affected, white syndrome disproportionately affected larger colonies of tabular Acroporids (>80 cm). The prevalence of white syndrome was strongly related to the abundance of tabular Acroporids within transects, yet the incidence of the syndrome appears unaffected by proximity to other colonies, suggesting that while white syndrome is density dependant, it does not exhibit a strongly aggregated spatial pattern consistent with previous coral disease outbreaks. Acroporid white syndrome was not transmitted by either direct contact in the field or by mucus in aquaria experiments. Monitoring of affected colonies revealed highly variable rates of tissue loss ranging from 0 to 1146 cm(-2) week(-1), amongst the highest documented for a coral disease. Contrary to previous links between temperature and coral disease, rates of tissue loss in affected colonies increased threefold during the winter months. Given the lack of spatial pattern and non-infectious nature of Acroporid white syndrome, further studies are needed to determine causal factors and longer-term implications of disease outbreaks on the Great Barrier Reef.  相似文献   

2.
Efforts to culture and conserve acroporid corals in aquaria have led to the discovery of a corallivorous polyclad flatworm (known as AEFW – Acropora-eating flatworm), which, if not removed, can eat entire colonies. Live observations of the AEFW, whole mounts, serial histological sections and comparison of 28S rDNA sequences with other polyclads reveal that this is a new species belonging to the family Prosthiostomidae Lang, 1884 and previously monospecific genus Amakusaplana (Kato 1938). Amakusaplana acroporae is distinguished from Amakusaplana ohshimai by a different arrangement and number of eyes, a large seminal vesicle and dorsoventrally compressed shell gland pouch. Typical of the genus, A. acroporae, lacks a ventral sucker and has a small notch at the midline of the anterior margin. Nematocysts and a Symbiodinium sp. of dinoflagellate from the coral are abundantly distributed in the gut and parenchyma. Individual adults lay multiple egg batches on the coral skeleton, each egg batch has 20–26 egg capsules, and each capsule contains between 3–7 embryos. Embryonic development takes approximately 21 days, during which time characteristics of a pelagic life stage (lobes and ciliary tufts) develop but are lost before hatching. The hatchling is capable of swimming but settles to the benthos quickly, and no zooxanthellae were observed in the animal at this stage. We suggest that intracapsular metamorphosis limits the dispersal potential of hatchlings and promotes recruitment of offspring into the natal habitat. The evolutionary and ecological significance of retaining lobes and ciliary tufts in the embryo are discussed. Camouflage, high fecundity and possible dispersal dimorphisms probably explain how Amakusaplana acroporae can cause Acropora sp. mortality in aquaria where natural predators may be absent.  相似文献   

3.

A growing number of studies have provided insights into the diversity of coral-associated bacteria and their function in the coral holobiont. Yet, information about spatial heterogeneity of bacteria within coral colonies is limited. Using 16S rRNA gene metabarcoding, we analyzed the bacterial community composition across four distinct locations in each of five wild Acropora loripes colonies. Considerable variation within and among colonies was present, which has implications for sampling strategies and data interpretation in coral microbiome research. Bacterial assemblages significantly differed in alpha and beta diversity among colonies, with all corals possessing a high relative abundance of Endozoicomonas. When the same A. loripes colonies were subsequently reared in aquaria over 4 weeks, the relative abundance of Marinobacter initially increased in all colonies. However, no significant alteration in bacterial community composition was observed over time and the colonies maintained distinct bacterial microbiomes.

  相似文献   

4.
Colonies of two scleractinian reef coral species, Acropora longicyathus and Acropora aspera were transplanted into patch reefs at One Tree Reef, Great Barrier Reef, Australia as part of the ENCORE experiment. These corals and colonies of A. aspera which were naturally present in the patch reefs were exposed to four treatments over two years: controls with normal seawater, elevated levels of nitrogen only, phosphorus only, or nitrogen plus phosphorus. These corals were sampled and used to determine whether gametogenic cycles and fecundity were affected by nutrient enrichment. Acropora longicyathus had a single annual gametogenic cycle. Corals exposed to elevated nitrogen produced significantly smaller and fewer eggs and contained less testes material than those which were not exposed to nitrogen. Exposure to elevated phosphorus only resulted in corals producing more but smaller eggs, and more testes material. Egg numbers of colonies from other treatments decreased as the gametogenic cycles continued, but those of the phosphorus colonies showed almost no reduction in egg numbers between the early and late stages of the gametogenic cycles. These results have important management implications for coral reefs as they demonstrate that small increases in concentrations of nitrogen and phosphorus can have severe effects on reproductive activity in these species of scleractinian corals.  相似文献   

5.
Coral patch reefs around San Salvador Island, Bahamas have been monitored with the aid of Earthwatch volunteers three times a year since 1992. During that period two significant mass bleaching events occurred: autumn 1995, and late summer 1998. Elsewhere in 1995, bleaching was caused by higher-than-normal summer sea temperatures; in San Salvador, however, temperatures were normal. In 1998 a prolonged period of higher-than-normal sea temperatures preceded bleaching on San Salvador and worldwide. During the 1995 event, one of the monitored reefs had twice the percentage of coral colonies bleached as the other two. Bleaching was more evenly distributed among the reefs during the 1998 event. In 1995 Agaricia agaricites was significantly more affected than other coral species, with almost 50% of all its colonies showing bleaching. Bleaching was more evenly spread among coral species in 1998, with five species showing bleaching on more than 40% of their colonies. Bleaching began on Millepora as early as August during the 1998 event and progressed to other species through the remainder of the autumn. In 1995 bleaching was not seen until late autumn and appeared to impact all affected species at about the same time. Recovery from the 1995 event was complete: no coral death or damage above normal background levels were seen. In the 1998 event, all Acropora cervicornis on the monitored reefs died and A. palmata was severely damaged. Millepora sp. lost almost half of their live tissue, and Montastraea sp. showed significant tissue damage following this event. Phototransect analysis suggests that more than 20% of total live tissue on affected species died during the 1998 event. A. cervicornis has demonstrated no re-growth from 1998 to 2000 on monitored reefs. Monitoring has suggested significant differences in causes and courses in these two events.  相似文献   

6.
In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS.  相似文献   

7.
The prevalence and host range of black band disease (BBD) was determined from surveys of 19 reefs within the Great Barrier Reef Marine Park, Australia. Prevalence of BBD was compared among reefs distributed across large-scale cross-shelf and long-shelf gradients of terrestrial or anthropogenic influence. We found that BBD was widespread throughout the Great Barrier Reef (GBR) and was present on 73.7% of the 19 reefs surveyed in 3 latitudinal sectors and 3 cross-shelf positions in the summer of 2004. Although BBD occurred on all mid-shelf reefs and all but one outer-shelf reefs, overall prevalence was low, infecting on average 0.09% of sessile cnidarians and 0.1% of scleractinian corals surveyed. BBD affected approximately 7% of scleractinian taxa (25 of approximately 350 GBR hard coral species) and 1 soft coral family, although most cases of BBD were recorded on branching Acropora species. Prevalence of BBD did not correlate with distance from terrestrial influences, being highest on mid-shelf reefs and lowest on inshore reefs (absent from 66%, n = 6, of these reefs). BBD prevalence was consistently higher in all shelf positions in the northern (Cooktown/Lizard Island) sector, which is adjacent to relatively pristine catchments compared to the central (Townsville) sector, which is adjacent to a more developed catchment. BBD cases were clustered within reefs and transects, which was consistent with local dispersal of pathogens via currents, although the spread of BBD was not dependent on the density or cover of any of the coral taxa examined. In combination, these results suggest that BBD is part of the natural ecology of coral assemblages of the GBR, and its prevalence is relatively unaffected by terrestrial influences on the scales characteristic of cross-shelf gradients.  相似文献   

8.
As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter‐ and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high‐ and low‐density aggregations of the threatened coral Acropora cervicornis in the Caribbean. We find that high‐density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet–ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density‐dependent factor that may impact traits important for the structure and function of coral reefs.  相似文献   

9.
In recent decades, the Florida reef tract has lost over 95% of its coral cover. Although isolated coral assemblages persist, coral restoration programs are attempting to recover local coral populations. Listed as threatened under the Endangered Species Act, Acropora cervicornis is the most widely targeted coral species for restoration in Florida. Yet strategies are still maturing to enhance the survival of nursery‐reared outplants of A. cervicornis colonies on natural reefs. This study examined the survival of 22,634 A. cervicornis colonies raised in nurseries along the Florida reef tract and outplanted to six reef habitats in seven geographical subregions between 2012 and 2018. A Cox proportional hazards regression was used within a Bayesian framework to examine the effects of seven variables: (1) coral‐colony size at outplanting, (2) coral‐colony attachment method, (3) genotypic diversity of outplanted A. cervicornis clusters, (4) reef habitat, (5) geographical subregion, (6) latitude, and (7) the year of monitoring. The best models included coral‐colony size at outplanting, reef habitat, geographical subregion, and the year of monitoring. Survival was highest when colonies were larger than 15 cm (total linear extension), when outplanted to back‐reef and fore‐reef habitats, and when outplanted in Biscayne Bay and Broward–Miami subregions, in the higher latitudes of the Florida reef tract. This study points to several variables that influence the survival of outplanted A. cervicornis colonies and highlights a need to refine restoration strategies to help restore their population along the Florida reef tract.  相似文献   

10.
Mesophotic coral ecosystems (below 30–40 m depth) host a large diversity of zooxanthellate coral communities and may play an important role in the ecology and conservation of coral reefs. Investigating the reproductive biology of mesophotic corals is important to understand their life history traits. Despite an increase in research on mesophotic corals in the last decade, their reproductive biology is still poorly understood. Here, gametogenesis and fecundity of the Indo-Pacific mesophotic coral, Acropora tenella, were examined in an upper mesophotic reef (40 m depth) in Okinawa, Japan for the first time. Acropora tenella is a hermaphrodite with a single annual gametogenic cycle, and both oogenesis and spermatogenesis occurring for 11–12 and 5–6 months, respectively. Timing of spawning of this species was similar to other shallow Acropora spp. in the region. However, colonies had longer gametogenic cycles and less synchronous gamete maturation compared to shallow acroporids with spawning extended over consecutive months. Both the polyp fecundity (number of eggs per polyp) and gonad index (defined as the number of eggs per square centimeter) of A. tenella were lower than most acroporids. Our findings contribute to understanding of the life history of corals on mesophotic reefs and suggest that the reproductive biology of upper mesophotic corals is similar to that of shallow-water corals.  相似文献   

11.
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities.  相似文献   

12.
This study describes the severity of the 2005 bleaching event at 15 reef sites across Venezuela and compares the 1998 and 2005 bleaching events at one of them. During August and September 2005, bleached corals were first observed on oceanic reefs rather than coastal reefs, affecting 1 to 4% of coral colonies in the community (3 reef sites, n = 736 colonies). At that time, however, no bleached corals were recorded along the eastern coast of Venezuela, an area of seasonal upwelling (3 reefs, n = 181 colonies). On coastal reefs, bleaching started in October but highest levels were reached in November 2005 and January 2006, when 16% of corals were affected among a wide range of taxa (e.g. scleractinians, octocorals, Millepora and zoanthids). In the Acropora habitats of Los Roques (an oceanic reef),no bleached was recorded in 2005 (four sites,n = 643 colonies). At Cayo Sombrero, a coastal reef site, bleaching was less severe in 1998 than in 2005 (9% of the coral colonies involving 2 species vs. 26% involving 23 species, respectively). Our results indicate that bleaching was more severe in 2005 than in 1998 on Venezuelan reefs; however, no mass mortality was observed in either of these two events.  相似文献   

13.
Fatal infestations of land-based Acropora cultures with so-called Acropora-eating flatworms (AEFWs) are a global phenomenon. We evaluate the hypothesis that AEFWs represent a risk to coral reefs by studying the biology and the invasive potential of an AEFW strain from the UK. Molecular analyses identified this strain as Amakusaplana acroporae, a new species described from two US aquaria and one natural location in Australia. Our molecular data together with life history strategies described here suggest that this species accounts for most reported cases of AEFW infestations. We show that local parasitic activity impairs the light-acclimation capacity of the whole host colony. A. acroporae acquires excellent camouflage by harbouring photosynthetically competent, host-derived zooxanthellae and pigments of the green-fluorescent protein family. It shows a preference for Acropora valida but accepts a broad host range. Parasite survival in isolation (5–7 d) potentially allows for an invasion when introduced as non-native species in coral reefs.  相似文献   

14.
We are developing techniques to restore coral populations by enhancing larval supply using “artificial spawning hotspots” that aggregate conspecific adult corals. However, no data were available regarding how natural larval supply from wild coral populations is influenced by fertilization rate and how this is in turn affected by local population density and genetic diversity. Therefore, we assessed population density and genetic diversity of a wild, arborescent coral, Acropora yongei, and compared these parameters with those of an artificially established A. yongei population in the field. The population density of wild arborescent corals was only 0.27% of that in the artificial population, even in a high‐coverage area. Genetic diversity was also low in the wild population compared with the artificial population, and approximately 10% of all wild colonies were clones. Based on these results, the larval supply in the artificial population was estimated to be at least 1,400 times higher than that in wild A. yongei populations for the same area of adult population.  相似文献   

15.
Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P < 0.05), respectively. We present these genes as potential coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.  相似文献   

16.
The condition of coral reefs in the Cuban Archipelago is poorly known. We aimed to analyse coral assemblages across 199 reef sites belonging to 12 localities. Crest and fore reefs were assessed using six metrics: species richness, density, coral cover, mortality, coral size and reef complexity. The condition of reefs varied across the archipelago from healthy to depleted reefs. The localities with best scores were Cienfuegos, Bahía de Cochinos and Cazones. These reefs have values of living coral cover (>20%) and complexity (>50?cm) similar to the best preserved Caribbean reefs. However, the majority of crest biotopes suffered important deterioration with old mortality of Acropora palmata populations and moderate coral cover (15%); although crest reefs still maintained their structural complexity. Despite moderate levels of coral cover in fore reefs (18%), their condition was alarming because 25% of the sites had cover below the recovery threshold of 10%, accumulated mortality and structural flattening. Compared with the 1980s, the species richness was roughly the same (42) for crest and fore reefs, although dominance has changed to widespread tolerant species. Coral reef assemblages varied at local and regional scales in similar magnitude, suggesting the combined effects of natural and anthropogenic drivers.  相似文献   

17.
Stemann, T. A. & Johnson, K. G. 1992 07 15: Coral assemblages, biofacies. and ecological zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. A large, subaerially exposed mid-Holocene reef in the Enriquillo Valley (southwest Dominican Republic) provides an excellent opportunity to examine the relationship between reefal ecology and reefal deposits. Coral species richness and diversity in the Enriquillo reef are comparable to that found in the recent of the Caribbean, and ecological zonation comprised of a shallow-water branching coral zone and a deeper water mixed-coral zone is apparent. Similar zonation and diversity patterns have been recognized on living Caribbcan reefs with moderate wave exposure. Three statistically discrete biopdcies can be discriminated in the Enriquillo deposits using quadrat point-counting techniques commonly used to census modern reefs. They include a facies dominated by Acropora cervicornis, a low diversity assemblage with abundant, large colonies of Siderastrea siderea and Stephanocoenia intersepta, and a higher diversity assembbdge composed of various taxa including Montastraea spp., Colpophyllia spp., and Agaricia spp. Each facies can be recognized at scales of 1–3 m2, though in some cases they extend for more than 20 m2. In general, the A. cervicornis facies is spatially segregated from the other two biofacies. although neither the shallow nor the deep-water ecological zone is comprised of a single reef biofacies. Rather, the biofacies described here appear to represent distinct micro-environments resulting from ecological variation at a subzonal scale. Micro-environments of similar scale are most likely preserved in other reef deposits. Recognition of these subzonal biofacies may have important consequences for the stratigraphical and paleoccological interpretation of fossil reefs. Corals, biofacies, reef zonation, coral communities, fossil reefs.  相似文献   

18.
Natural and anthropogenic catastrophes occurred at the end of the previous and in the beginning of the current centuries at the coral reefs of the World Ocean, and their consequences for the tropical shelf ecosystems have been described based on published data and our own investigations. It has been shown that in recent decades coral populations on reefs of tropical and subtropical regions of the World Ocean have been reduced by 80%, and in some areas have completely vanished. The biodiversity of reef ecosystems has been considerably reduced. The main reason for such changes is a 1-2°C increase in the temperature of surface waters in comparison with the monthly mean temperature in the hot season. The fate of the damaged coral reefs is under discussion. It is thought that in clean waters partially damaged coral reefs can recover, whereas in waters polluted as the result of human activity they collapse. The rate of coral reef restoration depends on the hydrological and hydrochemical conditions, frequency of natural calamities and competitive interrelation of algae and corals on the damaged sites of coral reefs. The nature of competitive interrelation between algae and corals is considered, viz., the dynamics of obliteration of damaged and dead coral colonies by various algal species, mechanisms of competitive interrelation, effects of the environment on the competitive ability of corals and algae, the internal and external conditions for victory in competitive activity. It has been suggested that coral reefs can be restored through temporary transformation into a vegetable reef. In the absence of natural calamities damaged reefs can be clearly restored to their original or altered state over several decades, but only in clean waters.  相似文献   

19.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

20.
Other than coral bleaching, few coral diseases or diseases of other reef organisms have been reported from Japan. This is the first report of lesions similar to Porites ulcerative white spots (PUWS), brown band disease (BrB), pigmentation response (PR), and crustose coralline white syndrome (CCWS) for this region. To assess the health status and disease prevalence, qualitative and quantitative surveys (3 belt transects of 100 m2 each on each reef) were performed in March and September 2010 on 2 reefs of the Ginowan-Ooyama reef complex off Okinawa, and 2 protected reefs off Zamani Island, in the Kerama Islands 40 km west of Okinawa. Overall, mean (±SD) disease prevalence was higher in Ginowan-Ooyama (9.7 ± 7.9%) compared to Zamami (3.6 ± 4.6%). Porites lutea was most affected by PUWS at Ooyama (23.1 ± 10.4 vs. 4.5 ± 5.2%). White syndrome (WS) mostly affected Acropora cytherea (12. 5 ± 18.0%) in Zamami and Oxipora lacera (10.2 ± 10%) in Ooyama. Growth anomalies (GA) and BrB were only observed on A. cytherea (8.3 ± 6.2%) and A. nobilis (0.8%) at Zamami. Black band disease affected Pachyseris speciosa (6.0 ± 4.6%) in Ooyama only. Pigmentation responses (PR) were common in massive Porites in both localities (2.6 ± 1.9 and 5.6 ± 2.3% respectively). Crustose coralline white syndrome (CCWS) was observed in both localities. These results significantly expand the geographic distribution of PUWS, BrB, PR and CCWS in the Indo-Pacific, indicating that the northernmost coral reefs in the western Pacific are susceptible to a larger number of coral diseases than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号