共查询到20条相似文献,搜索用时 8 毫秒
1.
Enterovirus type 71 (EV71) causes hand, foot, and mouth disease (HFMD), which is mostly self-limited but may be complicated with a severe to fatal neurological syndrome in some children. Understanding the molecular basis of virus-host interactions might help clarify the largely unknown neuropathogenic mechanisms of EV71. In this study, we showed that human annexin II (Anx2) protein could bind to the EV71 virion via the capsid protein VP1. Either pretreatment of EV71 with soluble recombinant Anx2 or pretreatment of host cells with an anti-Anx2 antibody could result in reduced viral attachment to the cell surface and a reduction of the subsequent virus yield in vitro. HepG2 cells, which do not express Anx2, remained permissive to EV71 infection, though the virus yield was lower than that for a cognate lineage expressing Anx2. Stable transfection of plasmids expressing Anx2 protein into HepG2 cells (HepG2-Anx2 cells) could enhance EV71 infectivity, with an increased virus yield, especially at a low infective dose, and the enhanced infectivity could be reversed by pretreating HepG2-Anx2 cells with an anti-Anx2 antibody. The Anx2-interacting domain was mapped by yeast two-hybrid analysis to VP1 amino acids 40 to 100, a region different from the known receptor binding domain on the surface of the picornavirus virion. Our data suggest that binding of EV71 to Anx2 on the cell surface can enhance viral entry and infectivity, especially at a low infective dose. 相似文献
2.
3.
Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 μM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71. 相似文献
4.
Chen D Duggan C Ganley JP Kooragayala LM Reden TB Texada DE Langford MP 《Protein expression and purification》2004,37(2):224-433
The VP1 gene of enterovirus 70 (EV70) possesses a large number of Escherichia coli low-usage codons (11.0%) and a bacterial ribosome binding site complementary sequence (RBSCS) 5'-UGUCUCCUUUUC-3' flanking the codon 139. Plasmids containing EV70 cDNA encoding the full-length VP1 failed to express in E. coli (BL21(DE3), Rosetta 2(DE3) or Rosetta (DE3)pLysS). High expression (>8% of total protein) of recombinant VP1 (rVP1m) in E. coli required engineering of the encoding cDNA (conserved modification of the native cDNA) by simultaneous substitution of a rare-codon cluster located between codons 103 and 132, and replacement of the RBSCS-TCCTTT sequence. The rare-codon frequencies of the cDNAs encoding VP1 non-overlapping terminal fragments N138 (1-138 aa) and C170 (141-310 aa) are similar (10.9 and 11.2%, respectively). However, in E. coli, high expression of recombinant C170 (rC170) required no modification of the native cDNA whereas high expression of recombinant N138 (rN138m) required minimal synonymous substitution of the above rare-codon cluster. The rare-codon cluster of EV70 VP1 gene has five least-usage arginine codons (AGG/AGA) and three tandem rare-codon pairs (AGGAGG, CUAAGG, and AGACUA). Our results suggest that the rare-codon cluster (its rare codon arrangement per se and/or its related mRNA secondary structure(s)) and the RBSCS in EV70 VP1 gene, not the rare-codon frequency, constitute the key elements that suppress its expression in E. coli. 相似文献
5.
Huang PN Lin JY Locker N Kung YA Hung CT Lin JY Huang HI Li ML Shih SR 《Nucleic acids research》2011,39(22):9633-9648
Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy. 相似文献
6.
Nucleotide sequences of the genome RNA encoding capsid protein VP1 (918 nucleotides) of 18 enterovirus 70 (EV70) isolates collected from various parts of the world in 1971 to 1981 were determined, and nucleotide substitutions among them were studied. The genetic distances between isolates were calculated by the pairwise comparison of nucleotide difference. Regression analysis of the genetic distances against time of isolation of the strains showed that the synonymous substitution rate was very high at 21.53 x 10(-3) substitution per nucleotide per year, while the nonsynonymous rate was extremely low at 0.32 x 10(-3) substitution per nucleotide per year. The rate estimated by the average value of synonymous and nonsynonymous substitutions (W.-H. Li, C.-C. Wu, and C.-C. Luo, Mol. Biol. Evol. 2:150-174, 1985) was 5.00 x 10(-3) substitution per nucleotide per year. Taking the average value of synonymous and nonsynonymous substitutions as genetic distances between isolates, the phylogenetic tree was inferred by the unweighted pairwise grouping method of arithmetic average and by the neighbor-joining method. The tree indicated that the virus had evolved from one focal place, and the time of emergence was estimated to be August 1967 +/- 15 months, 2 years before first recognition of the pandemic of acute hemorrhagic conjunctivitis. By superimposing every nucleotide substitution on the branches of the phylogenetic tree, we analyzed nucleotide substitution patterns of EV70 genome RNA. In synonymous substitutions, the proportion of transitions, i.e., C<==>U and G<==>A, was found to be extremely frequent in comparison with that reported on other viruses or pseudogenes. In addition, parallel substitutions (independent substitutions at the same nucleotide position on different branches, i.e., different isolates, of the tree) were frequently found in both synonymous and nonsynonymous substitutions. These frequent parallel substitutions and the low nonsynonymous substitution rate despite the very high synonymous substitution rate described above imply a strong restriction on nonsynonymous substitution sites of VP1, probably due to the requirement for maintaining the rigid icosahedral conformation of the virus. 相似文献
7.
Tang WF Yang SY Wu BW Jheng JR Chen YL Shih CH Lin KH Lai HC Tang P Horng JT 《The Journal of biological chemistry》2007,282(8):5888-5898
Enterovirus 71 is an enterovirus of the family Picornaviridae. The 2C protein of poliovirus, a relative of enterovirus 71, is essential for viral replication. The poliovirus 2C protein is associated with host membrane vesicles, which form viral replication complexes where viral RNA synthesis takes place. We have now identified a host-encoded 2C binding protein called reticulon 3, which we found to be associated with the replication complex through direct interaction with the enterovirus 71-encoded 2C protein. We observed that the N terminus of the 2C protein, which has both RNA- and membrane-binding activity, interacted with reticulon 3. This region of interaction was mapped to its reticulon homology domain, whereas that of 2C was encoded by the 25th amino acid, isoleucine. Reticulon 3 could also interact with the 2C proteins encoded by other enteroviruses, such as poliovirus and coxsackievirus A16, implying that it is a common factor for such viral replication. Reduced production of reticulon 3 by RNA interference markedly reduced the synthesis of enterovirus 71-encoded viral proteins and replicative double-stranded RNA, reducing plaque formation and apoptosis. Furthermore, reintroduction of nondegradable reticulon 3 into these knockdown cells rescued enterovirus 71 infectivity, and viral protein and double-stranded RNA synthesis. Thus, reticulon 3 is an important component of enterovirus 71 replication, through its potential role in modulation of the sequential interactions between enterovirus 71 viral RNA and the replication complex. 相似文献
8.
Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. 总被引:4,自引:0,他引:4 下载免费PDF全文
Members of the human heat shock (HSP) family of related proteins are involved in the intracellular folding, transport, and assembly of proteins and protein complexes. We have observed that human heat shock protein 70 (HSP70) is associated with the capsid precursor P1 of poliovirus and coxsackievirus B1 in infected HeLa cells. Antiserum generated against HSP70 coimmunoprecipitated the poliovirus protein P1, an intermediate in capsid assembly. Similarly, alpha-virion serum coimmunoprecipitated HSP70 from virus-infected cell extracts, but not from mock-infected cell extracts. The HSP70-P1 complex was stable in high-salt medium but was sensitive to incubation with 2 mM ATP, which is a characteristic of other known functional complexes between HSP70 and cellular proteins. The P1 in the complex was predominantly newly synthesized, and the half-life of complexed P1 was nearly twice as long as that of total P1. The HSP70-P1 complex was found to sediment at 3S to 6S, suggesting that it may be part of, or a precursor to, the "5S promoter particles" thought to be an assembly intermediate of picornaviruses. The finding that HSP70 was associated with the capsid precursors of at least two enteroviruses may suggest a functional role of these complexes in the viral life cycles. 相似文献
9.
An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation. 相似文献
10.
11.
12.
Chen SC Chang LY Wang YW Chen YC Weng KF Shih SR Shih HM 《The Journal of biological chemistry》2011,286(36):31373-31384
Enterovirus 71 (EV71), a member of the Picornaviridae family, may cause serious clinical manifestations associated with the central nervous system. Enterovirus 3C protease is required for virus replication and can trigger host cell apoptosis via cleaving viral polyprotein precursor and cellular proteins, respectively. Although the role of the 3C protease in processing viral and cellular proteins has been established, very little is known about the modulation of EV71 3C function by host cellular factors. Here, we show that sumoylation promotes EV71 3C protein ubiquitination for degradation, correlating with a decrease of EV71 in virus replication and cell apoptosis. SUMO E2-conjugating enzyme Ubc9 was identified as an EV71 3C-interacting protein. Further studies revealed that EV71 3C can be SUMO (small ubiquitin-like modifier)-modified at residue Lys-52. Sumoylation down-regulated 3C protease activity in vitro and also 3C protein stability in cells, in agreement with data suggesting 3C K52R protein induced greater substrate cleavage and apoptosis in cells. More importantly, the recombinant EV71 3C K52R virus infection conferred more apoptotic phenotype and increased virus levels in culture cells, which also correlated with a mouse model showing increased levels of viral VP1 protein in intestine and neuron loss in the spinal cord with EV71 3C K52R recombinant viral infection. Finally, we show that EV71 3C amino acid residues 45-52 involved in Ubc9 interaction determined the extent of 3C sumoylation and protein stability. Our results uncover a previously undescribed cellular regulatory event against EV71 virus replication and host cell apoptosis by sumoylation at 3C protease. 相似文献
13.
Chen P Song Z Qi Y Feng X Xu N Sun Y Wu X Yao X Mao Q Li X Dong W Wan X Huang N Shen X Liang Z Li W 《The Journal of biological chemistry》2012,287(9):6406-6420
Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions. 相似文献
14.
15.
Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus. 总被引:27,自引:0,他引:27
H L Bachrach D M Moore P D McKercher J Polatnick 《Journal of immunology (Baltimore, Md. : 1950)》1975,115(6):1636-1641
The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus. 相似文献
16.
Cartier C Hemonnot B Gay B Bardy M Sanchiz C Devaux C Briant L 《The Journal of biological chemistry》2003,278(37):35211-35219
Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein. 相似文献
17.
The capsid protein (CA) (p24) of human immunodeficiency virus (HIV) type 1 expressed in Escherichia coli and purified to greater than 90% homogeneity was used to examine assembly in vitro and to probe the nature of interactions involved in the formation of capsid structures. The protein was detected in dimeric and oligomeric forms as indicated by molecular size measurements by gel filtration column chromatography, sedimentation through sucrose, and nondenaturing gel electrophoresis. Chemical cross-linking of CA molecules was observed with several homobifunctional reagents. Oligomer size was dependent on cross-linker concentration and exhibited a nonrandom pattern in which dimers and tetramers were more abundant than trimers and pentamers. Oligomers as large as dodecamers were detected in native polyacrylamide gels. These were stable in solutions of high ionic strength or in the presence of nonionic detergent, indicating that strong interactions were involved in oligomer stabilization. Limited tryptic digestion converted the putative dodecamers to octamers, suggesting that a region involved in CA protein multimerization was exposed in the structure. This region was mapped to the central portion of the protein. The recombinant CA proteins assembled in vitro into long rodlike structures and were disassembled into small irregular spheres by alterations in ionic strength and pH. The observation that assembly and disassembly of purified HIV type 1 CA protein can be induced in vitro suggests an approach for identifying possible control mechanisms involved in HIV viral core assembly. 相似文献
18.
《Process Biochemistry》2007,42(1):77-82
The production of C595 diabody fragment (dbFv) in Escherichia coli (E. coli) HB2151 clone has been explored. The comparison of fermentation processes mode demonstrated that a higher biomass inoculum operation enhanced C595 dbFv production. It was demonstrated that a concentration of 12.1 mg l−1 broth of dbFv and a cell concentration of 23.6 g l−1 broth were achieved at the end of 75 l fermentation. 相似文献
19.
This study describes the potential use of attenuated Salmonella enterica serovar Typhimurium strains to express and deliver VP1 of enterovirus 71 (EV71) as a vaccination strategy to prevent EV71 infection in mice. When orally administered to BALB/c mice, both attenuated carrier strains, CNP101 and SL7207, were able to efficiently invade livers and spleens, while only the virulence plasmid-carrying strain SL7207 persisted for more than 30 days in these organs. A recombinant in vivo-regulated promoter expression plasmid expressing VP1 antigen of EV71 was constructed. The expression of the VP1, directed by the pagC promoter, in attenuated Salmonella was confirmed by Western blot hybridization. Both humoral and cellular immune responses were elicited in mice by oral immunization with such Salmonella-based VP1 vaccines. We evaluated the protective efficacy of the vaccines in mice using a maternal immunization protocol. With a lethal challenge, ICR newborn mice born to dams immunized with Salmonella-based VP1 vaccine showed a 50-60% survival; in contrast, none of the mice in the control group survived the challenge. Our data indicated that Salmonella-based VP1 subunit vaccines are a promising vaccine strategy in the prevention of EV71 infection. 相似文献
20.
Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein. 总被引:8,自引:0,他引:8 下载免费PDF全文
S Bertagnoli J Gelfi G Le Gall E Boilletot J F Vautherot D Rasschaert S Laurent F Petit C Boucraut-Baralon A Milon 《Journal of virology》1996,70(8):5061-5066
Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. 相似文献