首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A scientific explanation for the beneficial role of vitamin D supplementation in the lowering of glycemia in diabetes remains to be determined. This study examined the biochemical mechanism by which vitamin D supplementation regulates glucose metabolism in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mm) in the presence or absence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (25, 50 nm), the active form of vitamin D. 1,25(OH)2D3 treatment caused significant up-regulation of GLUT4 total protein expression and its translocation to cell surface, and an increase in glucose uptake as well as glucose utilization in HG-treated cells. 1,25(OH)2D3 also caused cystathionine-γ-lyase (CSE) activation and H2S formation in HG-treated adipocytes. The effect of 1,25(OH)2D3 on GLUT4 translocation, glucose utilization, and H2S formation was prevented by propargylglycine, an inhibitor of CSE that catalyzes H2S formation. Studies using antisense CSE also demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)2D3-supplemented CSE-siRNA-transfected adipocytes compared with controls. 1,25(OH)2D3 treatment along with insulin enhanced GLUT4 translocation and glucose utilization compared with either insulin or 1,25(OH)2D3 alone in HG-treated adipocytes. 1,25(OH)2D3 supplementation also inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes. This is the first report to demonstrate that 1,25(OH)2D3 up-regulates GLUT4 translocation and glucose utilization and decreases inflammatory markers, which is mediated by CSE activation and H2S formation in adipocytes. This study provides evidence for a novel molecular mechanism by which 1,25(OH)2D3 can up-regulate the GLUT4 translocation essential for maintenance of glucose metabolism.  相似文献   

3.
Chronic administration of aluminium has been proposed as an environmental factor that may affect some pathological changes related to neurotoxicity and Alzheimer’s disease (AD). The abnormal generation and deposition of β-amyloid (Aβ) in senile plaques are hallmark features in the brains of AD patients. Furthermore, Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. In the present study, we investigated the modulation of Aβ deposition and neurotoxicity in aluminium-maltolate-treated (0, 15, 30, 45 mmol/kg body weight via intraperitoneal injection) in experimental rats. We measured Aβ1–40 and Aβ1–42 in the cortex and hippocampus in rat brains using ELISA. Subtypes of α-secretase, β-secretase, and γ-secretase, including ADAM9, ADAM10, ADAM17 (TACE), BACE1, presenilin 1 (PS1) and nicastrin (NCT), were determined using western blotting analyses. These results indicated that aluminium-maltolate induced an AD-like behavioural deficit in rats at 30 and 45 mmol/kg body weight. Moreover, the Aβ1–42 content increased significantly, both in the cortex and hippocampus, although no changes were observed in Aβ1–40. Furthermore, ADAM9, ADAM10, and ADAM17 decreased significantly; in contrast, BACE1, PS1, and NCT showed significant increase. Taken together, these results suggest that the changes in secretases may correlate to the abnormal deposition of Aβ by aluminium in rat brains.  相似文献   

4.
The distribution of mitochondria during early development of mouse embryos was visualized bymitochondria-specific vital fluorescent dye, rhodamine 123(Rh 123). Mitochondrial clusters wasmarkedly conceotrated to perinuclear area in blastomere of normal 2-ccll embryos. In blastomere ofuncompacted 8-cell embryos, mitochondria were randomly distributed throughout the cytoplasm, butthey were reorganizcd to the cytocortices beneath the apposed surfaces of blastomere duringcompaction. As demonstrated in our study, colchicine (10 μg/ml) produced marked effect onmitochondrial distribution in blastomcre of 2-cell and compacted 8-cell embryos: mitochondriabecame scattered throughout the cytoplasm ofblastomere. It is suggested that the spatial distributionof mitochondria in early mouse embryo are maintained by microtubule.  相似文献   

5.
6.
7.
The methanolic extract of pasuchaca (Geranium dielsiaum) (PsEx) was found to suppress blood glucose elevation after oral administration of sucrose, maltose, and starch, but not after oral administration of glucose, in the mouse. In vitro examination of the inhibitory effect of PsEx on maltase activity revealed that PsEx strongly inhibited mouse small intestine maltase activity. Taken together, these results suggest that the inhibitory effect of PsEx on α-glucosidase activity might contribute to delay in carbohydrate digestion and subsequent lowering of the blood glucose level, thereby leading to prevention and cure of diabetes.  相似文献   

8.
Complex interactions between effector T cells and Foxp3+ regulatory T cells (Treg) contribute to clinical outcomes in cancer, and autoimmune and infectious diseases. Previous work showed that IL-12 reversed Treg-mediated suppression of CD4+Foxp3 T cell (Tconv) proliferation. We and others have also shown that Tregs express T-bet and IFN-γ at sites of Th1 inflammation and that IL-12 induces IFN-γ production by Tregs in vitro. To investigate whether loss of immunosuppression occurs when IFN-γ is expressed by Tregs we treated mouse lymphocyte cultures with IL-12. IFN-γ expression did not decrease the ability of Tregs to suppress Tconv proliferation. Rather, IL-12 treatment decreased Treg frequency and Foxp3 levels in Tregs. We further showed that IL-12 increased IL-2R expression on Tconv and CD8 T cells, diminished its expression on Tregs and decreased IL-2 production by Tconv and CD8 T cells. Together, these IL-12 mediated changes favored the outgrowth of non-Tregs. Additionally, we showed that treatment with a second cytokine, IL-27, decreased IL-2 expression without augmenting Tconv and CD8 T cell proliferation. Notably, IL-27 only slightly modified levels of IL-2R on non-Treg T cells. Together, these results show that IL-12 has multiple effects that modify the balance between Tregs and non-Tregs and support an important role for relative levels of IL-2R but not for IFN-γ expression in IL-12-mediated reversal of Treg immunosuppression.  相似文献   

9.
The binding of [35S]GTPS was characterised with autoradiography in rat brain. The binding was saturable, but the rate of dissociation was very slow. Analysis of binding isotherms revealed one class of binding sites with a Kd of 0.8 M. The specific binding was 98%. Different guanine nucleotides were all able to compete with [35S]GTPS binding. However, no displacement was seen by the ATP-analogue App[NH]p, indicating that [35S]GTPS does not bind to ATP-sites. Autoradiograms showed a highly homogenous distribution of [35S]GTPS binding, in grey as well as in white matter. However, the pattern changed dramatically in the presence of GTP, which, unlike the non-hydrolysable GTP-analogues Gpp[NH]p and GTPS, did not displace [35S]GTPS binding throughout the brain. In white matter areas the binding was potently displaced, while in many grey matter areas, e.g., the striatum, the binding was seen to increase. This GTP-induced increase in [35S]GTPS binding was strongly Mg2+-dependent, with an optimum at 10 mM. This, together with the finding that the regional effects of GTP correspond well to previously reported distribution of low Km GTPase, suggest that the levels of binding of [35S]GTPS in the presence of GTP may reflect functional G-protein activity.  相似文献   

10.
11.
Differences between mouse strains in frequency of embryonic, cortisone-induced cleft palate were examined. Probit analysis demonstrated a family of linear and parallel dose-response curves for different inbred and hybrid embryos. Since the differences between genotypes were not in the slopes of the response curves but rather in their location, it is proposed that the median effective dose (ED50) of cortisone required to induce cleft palate (or the tolerance) provides a more appropriate definition of the response trait and its difference than a frequency statement. The tolerance of C57BL/6J is dominant to that of A/J. A maternal effect of A/J relative to C57BL/6J dams caused a two-fold reduction in the embryonic tolerance of cortisone. Cortisone-induced cleft palate and mortality were separate response traits.—In these and previous studies on cortisone- and other glucocorticoid-induced cleft palate in the mouse, the nature of the cleft-palate-response curve appeared to be the same for all glucocorticoids, and within-strain differences in tolerance could be used as measures of potency or bioassays for a particular effect of the glucocorticoids.  相似文献   

12.
13.
&#103 2-Glycoprotein I (&#103 2GPI) is known to influence macrophage uptake of particles with phosphatidylserine containing surfaces, as apoptotic thymocytes and unilamellar vesicles in vitro. Nevertheless, effects upon macrophage activation induced by this interaction are still unknown. &#103 2GPI influence upon the reactive species production by Kupffer cells was evaluted in order to investigate whether &#103 2GPI modulates the macrophage response to negatively charged surfaces. Chemiluminescence of isolated non-parenchymal rat liver cells was measured after phagocytosis of opsonized zymosan or phorbolmyristate acetate (PMA) stimulation, in the presence and absence of large unilamellar vesicles (LUVs) containing 25mol% phosphatidylserine (PS) or 50mol% cardiolipin (CL) and complementary molar ratio of phosphatidylcholine (PC). &#103 2GPI decreased by 50% the chemiluminescence response induced by opsonized zymosan, with a 66% reduction of the initial light emission rate. PMA stimulated Kupffer cell chemiluminescence was insensitive to human or rat &#103 2GPI. Albumin (500 &#119 g/ml) showed no effect upon chemiluminescence. &#103 2GPI increased PS/PC LUV uptake and degradation by Kupffer cells in a concentration-dependent manner, without leakage of the internal contents of the LUVs, as shown by fluorescence intensity enhancement. LUVs opsonized with antiphospholipid antibodies (aPL) from syphilitic patients increased light emission by Kupffer cells. Addition of &#103 2GPI to the assay reduced chemiluminescence due to opsonization with purified IgG antibodies from systemic lupus erythematosus (SLE or syphilis (Sy) patient sera. A marked net increase in chemiluminescence is observed in the presence of Sy aPL antibodies, whereas a decrease was found when SLE aPL were added to the assay, in the presence or absence of &#103 2GPI. At a concentration of 125 &#119 g/ml, &#103 2 GPI significantly reduced Kupffer cell Candida albicans phagocytosis index and killing score by 50 and 10%, respectively. The present data strongly suggest that particle uptake in the presence of &#103 2GPI is coupled to an inhibition of reactive species production by liver macrophages during the respiratory burst, supporting the role of &#103 2GPI as a mediator of senescent cell removal.  相似文献   

14.
The liver plays a major role in the formation of H2S, a novel signaling molecule. Diabetes is associated with lower blood levels of H2S. This study investigated the activities of cystathionine-γ-lyase (CSE, the enzyme that catalyzes H2S formation) in livers of type 1 diabetic (T1D) animals and in peripheral blood mononuclear cells (PBMC) isolated from T1D patients. T1D is associated with both hyperketonemia (acetoacetate and β-hydroxybutyrate) and hyperglycemia. This study also examined the role of hyperglycemia and hyperketonemia per se in decreased CSE activity using U937 monocytes and PBMC isolated from healthy subjects. Livers from streptozotocin-treated T1D rats demonstrated a significantly higher reactive oxygen species production, lower CSE protein expression and activity, and lower H2S formation compared with those of controls. Studies with T1D patients showed a decrease in CSE protein expression and activity in PBMC compared with those of age-matched normal subjects. Cell culture studies demonstrated that high glucose (25 mm) and/or acetoacetate (4 mm) increased reactive oxygen species, decreased CSE mRNA expression, protein expression, and enzymatic activity, and reduced H2S levels; however, β-hydroxybutyrate treatment had no effect. A similar effect, which was also observed in PBMC treated with high glucose alone or along with acetoacetate, was prevented by vitamin D supplementation. Studies with CSE siRNA provide evidence for a relationship between impaired CSE expression and reduced H2S levels. This study demonstrates for the first time that both hyperglycemia and hyperketonemia mediate a reduction in CSE expression and activity, which can contribute to the impaired H2S signaling associated with diabetes.  相似文献   

15.
AbstractTo visualize the norepinephrine transporters (NETs) in various brain diseases, we developed radioiodinated (2S,αS)-2-(α-(2-iodophenoxy)benzyl)morpholine ((S,S)-IPBM). This radioligand achieved the basic requirements for NET imaging. In this study, we assessed the potential of radioiodinated (S,S)-IPBM as an imaging biomarker of NET to obtain diagnostic information about depression in relation to NET expression in the brain using a rat depression model. The ex vivo autoradiographic experiments using the (S,S)-[125I]IPBM showed significantly lower accumulation of radioactivity in the locus coeruleus (LC) and the anteroventricular thalamic nucleus (AVTN) of the depression group than in those of the control group. Consequently, in vitro autoradiographic experiments showed that NET maximum binding (Bmax) values in the LC and AVTN, known as NET-rich regions, were significantly decreased in the rat model of depression when compared to those of the control rats. In addition, there was an extremely good correlation between NET Bmax and (S,S)-IPBM accumulation (r = .98), an indication of radioiodinated IPBM as a quantitative NET imaging biomarker. The reduction in (S,S)-[125I]IPBM accumulation in the rat model of depression correlated with that of NET density. These results suggest that (S,S)-[123I]IPBM has potential as an imaging biomarker of NET to obtain diagnostic information about major depression.  相似文献   

16.
17.
Diallyl disulfide (DADS), a component of garlic, has been shown to induce growth inhibition and apoptosis in human cancer cell types. The present studies were designed to investigate the effects of DADS on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, cell cycle analysis, reactive oxygen species (ROS), Ca2+ production, mitochondria membrane potential, apoptosis induction, associated gene expression and caspases-3 activity were examined by flow cytometric assay and/or Western blot. After 24-h treatment with DADS, a dose- and time-dependent decrease in the viability of N18 cells was observed and the approximate IC50 was 27.6 μM. The decreased percentage of viable cells are associated with the production of ROS then followed by the production of Ca2+ which is induced by DADS. DADS induced apoptosis in N18 cells via the activation of caspase-3. DADS increased the protein levels of p53, cytochrome c and phosphated JNK within 24 h of treatment and it decreased the levels of Bcl-2 and those factors may have led to the mitochondria depolarization of N18 cells. DADS induced apoptosis were accompanied by increased levels of Ca2+ and decreased mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-3. Deleted levels of Ca2+ by BAPTA-AM 10 μM (intracellular calcium chelator) then led to decrease DADS-induced apoptosis. Inhibition of caspase-3 activation by inhibitor (z-VAD-fmk) completely blocked DADS-induced apoptosis on N18 cells. The results indicated that oxidative stress modulates cell proliferation and Ca2+ modulates the cell death induced by DADS.  相似文献   

18.
Harpagide (1) and harpagoside (2) are two iridoid glycosides existing in many medicinal plants. Although they are believed to be the main bioactive compounds related to the anti-inflammatory efficacy of these plants, the mechanisms of their anti-inflammatory activities remain unclear. The results of our present study showed that 1 and 2 had no effects on inhibitions of cyclooxygenase (COX)-1/2 enzyme activity, tumor necrosis factor-α (TNF-α) release, and nitric oxide (NO) production in vitro. However, the hydrolyzed products of 1 and 2 with β-glucosidase treatment showed a significant inhibitory effect on COX-2 activity at 2.5-100 μM in a concentration-dependent manner. Our further study revealed that the hydrolyzed 2 product was structurally the same as the hydrolyzed 1 product (H-harpagide (3)). The structure of 3 was 2-(formylmethyl)-2,3,5-trihydroxy-5-methylcyclopentane carbaldehyde, with a backbone similar to prostaglandins and COX-2 inhibitors such as celecoxib. All of them have a pentatomic ring with two adjacent side chains. The result of molecular modeling and docking study showed that 3 could bind to the COX-2 active domain well through hydrophobic and hydrogen-bonding interactions, whereas 1 and 2 could not, implying that the hydrolysis of the glycosidic bond of 1 and 2 is a pre-requisite step for their COX-2 inhibitory activity.  相似文献   

19.
Differential Expression and Regulation of Basigin Gene Mouse Uterus during Early Pregnancy  相似文献   

20.
We provide evidence for a unique pathway engaged by the type II IFN receptor, involving mTORC2/AKT-mediated downstream regulation of mTORC1 and effectors. These events are required for formation of the eukaryotic translation initiation factor 4F complex (eIF4F) and initiation of mRNA translation of type II interferon-stimulated genes. Our studies establish that Rictor is essential for the generation of type II IFN-dependent antiviral and antiproliferative responses and that it controls the generation of type II IFN-suppressive effects on normal and malignant hematopoiesis. Together, our findings establish a central role for mTORC2 in IFNγ signaling and type II IFN responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号