首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise.

Methodology/Principal Findings

We investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0–11 dB (SPL) and 7–11 dB (PAL) in E. maculatus and by 1–2 dB (SPL) and by 1–4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13–29 dB (SPL) and 26–32 dB (PAL) in E. maculatus and 6–16 dB (SPL) and 6–19 dB (PAL) in S. tinanti.

Conclusions

Our data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family.  相似文献   

2.

Background

Thorny catfishes exhibit large variations in swim bladder morphology. These organs are of different sizes, forms and may have simple or branched diverticula. The swim bladder plays an important role in otophysans because it enhances their hearing sensitivity by transmitting sound pressure fluctuations via ossicles to the inner ear.

Methodology/Principal Findings

To investigate if a form-function relationship exists, the swim bladder morphology and hearing ability were analyzed in six species. The morphology was quantified by measuring the length, width and height and calculating a standardized swim bladder length (sSBL), which was then used to calculate the relative swim bladder length (rSBL). Hearing was measured using the auditory evoked potential (AEP) recording technique. Two species had simple apple-shaped and four species heart-shaped (cordiform) bladders. One of the latter species had short unbranched diverticula on the terminal margin, two had a secondary bladder and two had many long, branched diverticula. The rSBL differed significantly between most of the species. All species were able to detect frequencies between 70 Hz and 6 kHz, with lowest thresholds found between 0.5 and 1 kHz (60 dB re 1 µPa). Hearing curves were U-shaped except in Hemidoras morrisi in which it was ramp-like. Mean hearing thresholds of species possessing smaller rSBLs were slightly lower (maximum 8.5 dB) than those of species having larger rSBLs.

Conclusions/Significance

The current findings reveal a relationship between swim bladder form and its function among thorny catfishes. Relatively smaller swim bladders resulted in relatively better hearing. This is in contrast to a prior inter-familial study on catfishes in which species with large unpaired bladders possessed higher sensitivity at higher frequencies than species having tiny paired and encapsulated bladders.  相似文献   

3.

Background

In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders.

Methodology/Principal Findings

Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average.

Conclusions/Significance

The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species.  相似文献   

4.
Zhao W  Dhar S 《PloS one》2011,6(4):e18725

Background

The medial olivocochlear (MOC) pathway modulates basilar membrane motion and auditory nerve activity on both a fast (10–100 ms) and a slow (10–100 s) time scale in guinea pigs. The slow MOC modulation of cochlear activity is postulated to aide in protection against acoustic trauma. However in humans, the existence and functional roles of slow MOC effects remain unexplored.

Methodology/Principal Findings

By employing contralateral noise at moderate to high levels (68 and 83 dB SPL) as an MOC reflex elicitor, and spontaneous otoacoustic emissions (SOAEs) as a non-invasive probe of the cochlea, we demonstrated MOC modulation of human cochlear output both on a fast and a slow time scale, analogous to the fast and slow MOC efferent effects observed on basilar membrane vibration and auditory nerve activity in guinea pigs. The magnitude of slow effects was minimal compared with that of fast effects. Consistent with basilar membrane and auditory nerve activity data, SOAE level was reduced by both fast and slow MOC effects, whereas SOAE frequency was elevated by fast and reduced by slow MOC effects. The magnitudes of fast and slow effects on SOAE level were positively correlated.

Conclusions/Significance

Contralateral noise up to 83 dB SPL elicited minimal yet significant changes in both SOAE level and frequency on a slow time scale, consistent with a high threshold or small magnitude of slow MOC effects in humans.  相似文献   

5.

Background

Approximately 2–4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss.

Methodology/Principal Findings

A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05).

Conclusions/Significance

This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs.  相似文献   

6.

Background

The Weberian apparatus of otophysine fishes facilitates sound transmission from the swimbladder to the inner ear to increase hearing sensitivity. It has been of great interest to biologists since the 19th century. No studies, however, are available on the development of the Weberian ossicles and its effect on the development of hearing in catfishes.

Methodology/Principal Findings

We investigated the development of the Weberian apparatus and auditory sensitivity in the catfish Lophiobagrus cyclurus. Specimens from 11.3 mm to 85.5 mm in standard length were studied. Morphology was assessed using sectioning, histology, and X-ray computed tomography, along with 3D reconstruction. Hearing thresholds were measured utilizing the auditory evoked potentials recording technique. Weberian ossicles and interossicular ligaments were fully developed in all stages investigated except in the smallest size group. In the smallest catfish, the intercalarium and the interossicular ligaments were still missing and the tripus was not yet fully developed. Smallest juveniles revealed lowest auditory sensitivity and were unable to detect frequencies higher than 2 or 3 kHz; sensitivity increased in larger specimens by up to 40 dB, and frequency detection up to 6 kHz. In the size groups capable of perceiving frequencies up to 6 kHz, larger individuals had better hearing abilities at low frequencies (0.05–2 kHz), whereas smaller individuals showed better hearing at the highest frequencies (4–6 kHz).

Conclusions/Significance

Our data indicate that the ability of otophysine fish to detect sounds at low levels and high frequencies largely depends on the development of the Weberian apparatus. A significant increase in auditory sensitivity was observed as soon as all Weberian ossicles and interossicular ligaments are present and the chain for transmitting sounds from the swimbladder to the inner ear is complete. This contrasts with findings in another otophysine, the zebrafish, where no threshold changes have been observed.  相似文献   

7.
Schmidt AK  Römer H 《PloS one》2011,6(12):e28593

Background

Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured.

Principal Findings

Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals.

Conclusions

Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.  相似文献   

8.

Background

Augmentation cystoplasty (AC) with autogenous ileum remains the current gold standard surgical treatment for many patients with end-stage bladder disease. However, the presence of mucus-secreting epithelium within the bladder is associated with debilitating long-term complications. Currently, decellularised biological materials derived from porcine extracellular matrix (ECM) are under investigation as potential augmentation scaffolds. Important biomechanical limitations of ECMs are decreased bladder capacity and poor compliance after implantation.

Methodology/Principal Findings

In the present ex vivo study a novel concept was investigated where a two-fold increase in ECM scaffold surface-area relative to the resected ileal segment was compared in ovine bladder models after AC. Results showed that bladder capacity increased by 40±4% and 37±11% at 10 mmHg and compliance by 40.4±4% and 39.7±6% (ΔP = 0–10 mmHg) after AC with ileum and porcine urinary bladder matrix (UBM) respectively (p<0.05). Comparative assessment between ileum and UBM demonstrated no significant differences in bladder capacity or compliance increases after AC (p>0.05).

Conclusions

These findings may have important clinical implications as metabolic, infective and malignant complications precipitated by mucus-secreting epithelium are potentially avoided after augmentation with ECM scaffolds.  相似文献   

9.

Background

Prepulse inhibition (PPI) depicts the effects of a weak sound preceding strong acoustic stimulus on acoustic startle response (ASR). Previous studies suggest that PPI is influenced by physical parameters of prepulse sound such as intensity and preceding time. The present study characterizes the impact of prepulse tone frequency on PPI.

Methods

Seven female C57BL mice were used in the present study. ASR was induced by a 100 dB SPL white noise burst. After assessing the effect of background sounds (white noise and pure tones) on ASR, PPI was tested by using prepulse pure tones with the background tone of either 10 or 18 kHz. The inhibitory effect was assessed by measuring and analyzing the changes in the first peak-to-peak magnitude, root mean square value, duration and latency of the ASR as the function of frequency difference between prepulse and background tones.

Results

Our data showed that ASR magnitude with pure tone background varied with tone frequency and was smaller than that with white noise background. Prepulse tone systematically reduced ASR as the function of the difference in frequency between prepulse and background tone. The 0.5 kHz difference appeared to be a prerequisite for inducing substantial ASR inhibition. The frequency dependence of PPI was similar under either a 10 or 18 kHz background tone.

Conclusion

PPI is sensitive to frequency information of the prepulse sound. However, the critical factor is not tone frequency itself, but the frequency difference between the prepulse and background tones.  相似文献   

10.
Using an ethological approach, we studied the possibility of sound perception as well as probable contribution of diverse mechanosensory systems composing the mechanosensory complex to triggering of motor responses to sound stimulation in imaginal crickets Phaeophilacris bredoides lacking the tympanal organs (“deaf”). It was shown that Ph. bredoides imagoes are able to perceive sounds and respond to sound cues by a locomotor reaction in a relatively broad frequency range which becomes narrower as sound intensity decreases [0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–1.5 kHz (101 ± 3 dB SPL), 0.1–1.3 kHz (91 ± 3 dB SPL), 0.1–0.6 kHz (81 ± 3 dB SPL), and 0.1 kHz (71 ± 3 dB SPL)]. Sound perception and triggering ofmotor responses appear to involve the cercal organs (CO), subgenual organs (SO) and, probably, other distant mechanosensory organs (DMO). CO are essential for triggering of locomotor responses to sound within the ranges of 1.6–6.0 kHz (111 ± 3 dB SPL), 1–1.5 kHz (101 ± 3 dB SPL), 0.9–1.3 kHz (91 ± 3 dB SPL), and 0.5–0.6 kHz (81 ± 3 dB SPL). SO and, probably, other DMO provide locomotor responses to sound within the ranges of 0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–0.8 kHz (101 ± 3 dB SPL), 0.1–0.4 kHz (91 ± 3 dB SPL), and 0.1–0.4 kHz (81 ± 3 dB SPL). From this, it follows that “deaf” (nonsinging) Ph. bredoides can perceive sounds using CO, SO and, probably, other DMO, which (as in singing crickets) are likely to compose an integrated mechanosensory complex providing adequate acoustic behavior of this cricket species. Performance efficiency and sensitivity of the mechanosensory complex (specifically, of CO) rely on the thoroughness of grooming. Following self-cleaning of CO, the level of cricket motor activity in response to cue presentation returned to the baseline and sometimes even increased. Whether or not crickets of this species communicate acoustically is yet to be found out, however, we suggest that the mechanosensory complex, which triggers motor responses to a sound, is normally involved in the defensive escape response aimed at rescuing from predators.  相似文献   

11.
Acoustic communication is an important behavior in frog courtship. Male and female frogs of most species, except the concave-eared torrent frog Odorrana tormota, have largely similar audiograms. The large odorous frogs (Odorrana graminea) are sympatric with O. tormota, but have no ear canals. The difference in hearing between two sexes of the frog is unknown. We recorded auditory evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to determine auditory frequency sensitivity and threshold. The results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The more sensitive frequency range is 3–15 kHz for males and 1–8 kHz for females. Males have the minimum threshold at 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz for females. The best excitatory frequencies of single units are mostly between 3 and 5 kHz in females and at 7–8 kHz in males. The underlying mechanism of auditory sexual differences is discussed.  相似文献   

12.

Background

Invasive predators may change the structure of invaded communities through predation and competition with native species. In Europe, the invasive signal crayfish Pacifastacus leniusculus is excluding the native white clawed crayfish Austropotamobius pallipes.

Methodology and Principal Findings

This study compared the predatory functional responses and prey choice of native and invasive crayfish and measured impacts of parasitism on the predatory strength of the native species. Invasive crayfish showed a higher (>10%) prey (Gammarus pulex) intake rate than (size matched) natives, reflecting a shorter (16%) prey handling time. The native crayfish also showed greater selection for crustacean prey over molluscs and bloodworm, whereas the invasive species was a more generalist predator. A. pallipes parasitised by the microsporidian parasite Thelohania contejeani showed a 30% reduction in prey intake. We suggest that this results from parasite-induced muscle damage, and this is supported by a reduced (38%) attack rate and increased (30%) prey handling time.

Conclusions and Significance

Our results indicate that the per capita (i.e., functional response) difference between the species may contribute to success of the invader and extinction of the native species, as well as decreased biodiversity and biomass in invaded rivers. In addition, the reduced predatory strength of parasitized natives may impair their competitive abilities, facilitating exclusion by the invader.  相似文献   

13.

Background

The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear.

Methodology/Principal Findings

We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised.

Conclusions/Significance

Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function.  相似文献   

14.
Swim bladder extensions and hearing ability were examined in the temperate reef fish Polyprion oxygeneios (hapuka). Using the auditory evoked potential (AEP) technique, hearing thresholds were determined in four age-classes of hapuka, from larvae to juveniles. The youngest age-class had poor hearing abilities, with lowest thresholds of 132 dB re 1 μPa, and a narrow auditory bandwidth (100–800 Hz). Hearing ability improved significantly throughout the remainder of their first year, including decreases in thresholds of up to 27 dB, and an increase in auditory bandwidth (up to 1,000 Hz). Magnetic resonance imaging (MRI) was used to investigate structural mechanisms that may account for this ontogenetic improvement in hearing. These showed rostral extensions of the swim bladder developing early in the juvenile stage, and extending with increasing age closer to the otic capsule. It is suggested that this indirect connection between the swim bladder and the otic capsule could impart pressure sensitivity closer to the inner ear, accounting for the increase in sensitivity seen during development, although further investigation of older fish is required for conclusive evidence. The improvement in hearing ability in hapuka could be potentially related to a unique life history of extended pelagic durations up to 4 years.  相似文献   

15.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

16.
Zhang X  Dai Y  Zhang S  She W  Du X  Shui X 《PloS one》2012,7(1):e28961

Background

It has been believed that location of the perforation has a significant impact on hearing loss. However, recent studies have demonstrated that the perforation sites had no impact on hearing loss. We measured the velocity and pattern of the manubrium vibration in guinea pigs with intact and perforated eardrum using a laser Doppler vibrometer in order to determine the effects of different location perforations on the middle ear transfer functions.

Methods

Two bullas from 2 guinea pigs were used to determine stability of the umbo velocities, and 12 bullas from six guinea pigs to determine the effects of different location perforations on sound transmission. The manubrium velocity was measured at three points on the manubrium in the frequencies of 0.5–8 kHz before and after a perforation was made. The sites of perforations were in anterior-inferior (AI) quadrants of left ears and posterior-inferior (PI) quadrants of right ears.

Results

The manubrium vibration velocity losses were noticed in the perforated ears only below 1.5 kHz. The maximum velocity loss was about 7 dB at 500 Hz with the PI perforation. No significant difference in the velocity loss was found between AI and PI perforations. The average ratio of short process velocity to the umbo velocity was approximately 0.5 at all frequencies. No significant differences were found before and after perforation at all frequencies (p>0.05) except 7 kHz (p = 0.004) for both AI and PI perforations.

Conclusions

The manubrium vibration velocity losses from eardrum perforation were frequency-dependent and the largest losses occur at low frequencies. Manubrium velocity losses caused by small acute inferior perforations in guinea pigs have no significant impact on middle ear sound transmission at any frequency tested. The manubrium vibration axis may be perpendicular to the manubrium below 8 kHz in guinea pigs.  相似文献   

17.

Background

Visual field testing is an essential part of glaucoma care. It is hampered by variability related to the disease itself, response errors and fatigue. In glaucoma, blind parts of the visual field contribute to the diagnosis but - once established – not to progression detection; they only increase testing time. The aims of this study were to describe the persistence and spatial distribution of blind test locations in standard automated perimetry in glaucoma and to explore how the omission of presumed blind test locations would affect progression detection.

Methodology/Principal Findings

Data from 221 eyes of 221 patients from a cohort study with the Humphrey Field Analyzer with 30–2 grid were used. Patients were stratified according to baseline mean deviation (MD) in six strata of 5 dB width each. For one, two, three and four consecutive <0 dB sensitivities in the same test location in a series of baseline tests, the median probabilities to observe <0 dB again in the concerning test location in a follow-up test were 76, 86, 88 and 90%, respectively. For <10 dB, the probabilities were 88, 95, 97 and 98%, respectively. Median (interquartile range) percentages of test locations with three consecutive <0 dB sensitivities were 0(0–0), 0(0–2), 4(0–9), 17(8–27), 27(20–40) and 60(50–70)% for the six MD strata. Similar percentages were found for a subset of test locations within 10 degree eccentricity (P>0.1 for all strata). Omitting test locations with three consecutive <0 dB sensitivities at baseline did not affect the performance of the MD-based Nonparametric Progression Analysis progression detection algorithm.

Conclusions/Significance

Test locations that have been shown to be reproducibly blind tend to display a reasonable blindness persistence and do no longer contribute to progression detection. There is no clinically useful universal MD cut-off value beyond which testing can be limited to 10 degree eccentricity.  相似文献   

18.

Background

Coronary bronchial artery fistulas (CBFs) are rare anomalies, which may be isolated or associated with other disorders.

Materials and methods

Two adult patients with CBFs are described and a PubMed search was performed using the keywords “coronary bronchial artery fistulas” in the period from 2008 to 2013.

Results

Twenty-seven reviewed subjects resulting in a total of 31 fistulas were collected. Asymptomatic presentation was reported in 5 subjects (19 %), chest pain (n = 17) was frequently present followed by haemoptysis (n = 7) and dyspnoea (n = 5). Concomitant disorders were bronchiectasis (44 %), diabetes (33 %) and hypertension (28 %). Multimodality and single-modality diagnostic strategies were applied in 56 % and 44 %, respectively. The origin of the CBFs was the left circumflex artery in 61 %, the right coronary artery in 36 % and the left anterior descending artery in 3 %. Management was conservative (22 %), surgical ligation (11 %), percutaneous transcatheter embolisation (30 %), awaiting lung transplantation (7 %) or not reported (30 %).

Conclusions

CBFs may remain clinically silent, or present with chest pain or haemoptysis. CBFs are commonly associated with bronchiectasis and usually require a multimodality approach to be diagnosed. Several treatment strategies are available. This report presents two adult cases with CBFs and a review of the literature.  相似文献   

19.

Background

The swordfish (Xiphias gladius) is a cosmopolitan large pelagic fish inhabiting tempered and tropical waters and it is a target species for fisheries all around the world. The present study investigated the ability of COI barcoding to reliably identify swordfish and particularly specific stocks of this commercially important species.

Methodology

We applied the classical DNA barcoding technology, upon a 682 bp segment of COI, and compared swordfish sequences from different geographical sources (Atlantic, Indian Oceans and Mediterranean Sea). The sequences of the 5′ hyper-variable fragment of the control region (5′dloop), were also used to validate the efficacy of COI as a stock-specific marker.

Case Report

This information was successfully applied to the discrimination of unknown samples from the market, detecting in some cases mislabeled seafood products.

Conclusions

The NJ distance-based phenogram (K2P model) obtained with COI sequences allowed us to correlate the swordfish haplotypes to the different geographical stocks. Similar results were obtained with 5′dloop. Our preliminary data in swordfish Xiphias gladius confirm that Cytochrome Oxidase I can be proposed as an efficient species-specific marker that has also the potential to assign geographical provenance. This information might speed the samples analysis in commercial application of barcoding.  相似文献   

20.

Background

The clinical course of bicuspid aortic valves (BAVs) is variable. Data on predictors of aortopathy and valvular dysfunction mainly focus on valve morphology.

Aim

To determine whether the presence and extent of the raphe (fusion site of valve leaflets) is associated with the degree of aortopathy and valvular dysfunction in patients with isolated BAV and associated aortic coarctation (CoA).

Methods

Valve morphology and aortic dimensions of 255 BAV patients were evaluated retrospectively by echocardiography.

Results

BAVs with a complete raphe had a significantly higher prevalence of valve dysfunction (especially aortic regurgitation) than BAVs with incomplete raphes (82.9 vs. 66.7 %, p = 0.01). Type 1A BAVs (fusion of right and left coronary leaflets) and complete raphe had larger aortic sinus diameters compared with the rest of the population (37.74 vs. 36.01, p = 0.031). Patients with CoA and type 1A BAV had significantly less valve regurgitation (13.6 vs. 55.8 %, p < 0.001) and smaller diameters of the ascending aorta (33.7 vs. 37.8 mm, p < 0.001) and aortic arch (25.8 vs. 30.2 mm, p < 0.001) than patients with isolated BAV.

Conclusions

Type 1A BAV with complete raphe is associated with more aortic regurgitation and root dilatation. The majority of CoA patients have incomplete raphes, associated with smaller aortic root diameters and less valve regurgitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号