首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: To evaluate the influence of hypoxia and molecular events in endothelial and embryonic stem cells.Materials and Methods: Human umbilical vein endothelial cells (HUVECs) and mouse embryoid body (EB) cells were subjected to hypoxic conditions for different time courses. DNA fragmentation assay, quantification of apoptotic cells by TUNEL assay measured by flowcytometry, and Western blot analysis for the molecular events of apoptosis were performed.Results: DNA fragmentation could be identified under hypoxic conditions in HUVECs and mouse EBs. The DNA fragmentation increased when the hypoxic interval was extended.In situ internucleosomal DNA fragmentation-TUNEL assay also found that the percentages of apoptotic cells increased gradually in HUVECs and mouse EBs when the hypoxic interval was extended. Furthermore, the levels of expression of p53 and Bax both increased in hypoxic conditions.Conclusions: Hypoxia increases both HUVEC and mouse EB apoptosis, which is associated with increase in p53/Bax expression.  相似文献   

2.
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs’ proliferation and migration. Over-expression of Bcl-2 increased HAECs’ tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation.Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.  相似文献   

3.
4.
To investigate the possible cellular mechanisms of the ischemia-induced impairments of cerebral microcirculation, we investigated the effects of hypoxia/reoxygenation on the intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine brain microvascular endothelial cells (BBEC). In the cells kept in normal air, ATP elicited Ca(2+) oscillations in a concentration-dependent manner. When the cells were exposed to hypoxia for 6 h and subsequent reoxygenation for 45 min, the basal level of [Ca(2+)](i) was increased from 32.4 to 63.3 nM, and ATP did not induce Ca(2+) oscillations. Hypoxia/reoxygenation also inhibited capacitative Ca(2+) entry (CCE), which was evoked by thapsigargin (Delta[Ca(2+)](i-CCE): control, 62.3 +/- 3.1 nM; hypoxia/reoxygenation, 17.0 +/- 1.8 nM). The impairments of Ca(2+) oscillations and CCE, but not basal [Ca(2+)](i), were restored by superoxide dismutase and the inhibitors of mitochondrial electron transport, rotenone and thenoyltrifluoroacetone (TTFA). By using a superoxide anion (O(2)(-))-sensitive luciferin derivative MCLA, we confirmed that the production of O(2)(-) was induced by hypoxia/reoxygenation and was prevented by rotenone and TTFA. These results indicate that hypoxia/reoxygenation generates O(2)(-) at mitochondria and impairs some Ca(2+) mobilizing properties in BBEC.  相似文献   

5.
Luco RF  Allo M  Schor IE  Kornblihtt AR  Misteli T 《Cell》2011,144(1):16-26
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.  相似文献   

6.
7.
8.
《FEBS letters》2014,588(24):4784-4790
The MYC–MAX–MXD network is involved in the regulation of cell differentiation and proliferation. Hypoxia affects the expression levels of several members of this network, but changes specific to MAX expression have so far not been shown. We found that in endothelial cells, hypoxia induces alternative splicing of MAX, thereby increasing the expression of two MAX isoforms that differ from the wild type in their 3′ end. Isoform C is degraded by nonsense-mediated decay and isoform E encodes a highly unstable protein. The instability of isoform E is conferred by 36 isoform-specific amino acids, which have the capacity to destabilize heterologous proteins. Both splicing events are therefore unproductive and serve the purpose to downregulate the wild type protein.  相似文献   

9.
During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes.  相似文献   

10.
11.
Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Deltap85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.  相似文献   

12.
13.
14.
The expression of the SmB and SmB' spliceosome proteins in a variety of cell types and tissues has been investigated. Although SmB is found in all cells studied, the SmB' protein is found only in a small number of rodent cell types. The presence of this protein is correlated with the ability to utilize an alternative pathway of RNA splicing which is not available in most cell types. This is the first demonstration of tissue specific expression of a protein component of the spliceo-some and suggests a role for SmB' in the regulation of some cases of alternative RNA splicing.  相似文献   

15.
BACKGROUND/AIMS: Electrophilic methyl groups bound to positively charged nitrogen moieties may act as electron acceptors, and this mechanism could lead to the generation of methane from choline. The aims were to characterize the methanogenic potential of phosphatidylcholine metabolites, and to define the in vivo relevance of this pathway in hypoxia-induced cellular responses. METHODS: The postulated reaction was investigated (1) in model chemical experiments, (2) in rat mitochondrial subfractions and (3) in bovine endothelial cell cultures under hypoxic conditions and in the presence of hydroxyl radical generation. The rate of methane formation was determined by gas chromatography with flame-ionisation detectors. The lucigenin-enhanced chemiluminescence assay was used to determine the reactive oxygen species-scavenging capacity of the choline metabolites. RESULTS: Significant methane generation was demonstrated in all three series of experiments. Phosphatidylcholine metabolites with alcoholic moiety in the molecule (i.e. choline, N,N-dimethylethanolamine and N-methylethanolamine), inhibited oxygen radical production both in vitro and in vivo, and displayed an effectiveness proportional to the amount of methane generated and the number of methyl groups in the compounds. CONCLUSION: Methane generation occurs in aerobic systems. Phosphatidylcholine metabolites containing both electron donor and acceptor groups may have a function to counteract intracellular oxygen radical production.  相似文献   

16.
Mitochondrial damage is linked to many neurodegenerative conditions, such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. These diseases are associated with changes in the splicing pattern of individual mRNAs. Here, we tested the hypothesis that mitochondrial damage modulates alternative splicing, not only of a few mRNAs, but in a general manner. We incubated cultured human neuroblastoma cells with the chemical agent paraquat (a neurotoxin that interferes with mitochondrial function, causing energy deficit and oxidative stress) and analysed the splicing pattern of 13 genes by RT-PCR. For all mRNAs that are alternatively spliced, we observed a dose- and time-dependent increase of the smaller isoforms. In contrast, splicing of all constitutive splicing exons that we monitored did not change. Using other drugs, we show that the modulation of alternative splicing correlates with ATP depletion, not with oxidative stress. Such drastic changes in alternative splicing are not observed in cell lines of non-neuronal origin, suggesting a selective susceptibility of neuronal cells to modulation of splicing. As a significant percentage of all mammalian mRNAs undergo alternative splicing, we predict that mitochondrial failure will unbalance a vast number of isoform equilibriums, which would give an important contribution to neurodegeneration.  相似文献   

17.
18.
19.
The analysis of sequences required for alternative splicing of mRNA has predominantly been performed using cell culture systems. However, the phenotype of cultured cells is almost invariably different from that of cells in the intact animal. It is therefore possible that there are significant differences in the regulation of specific splicing reactions in vivo compared to in cell culture. Here, we describe methods for the visualization and analysis of alternative splicing in vivo using transgenic mice. These methods allow for the analysis of the temporal and tissue-specific regulation of alternative splicing both visually and quantitatively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号