首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In intact Madin-Darby canine kidney (MDCK) cell monolayers, vesicular stomatitis virus (VSV) matures only at basolateral membranes beneath tight junctions, whereas influenza virus buds from apical cell surfaces. Early in the growth cycle, the viral glycoproteins are restricted to the membrane domain from which each virus buds. We report here that phenotypic mixing and formation of VSV pseudotypes occurred when influenza virus-infected MDCK cells were superinfected with VSV. Up to 75% of the infectious VSV particles from such experiments were neutralized by antiserum specific for influenza virus, and a smaller proportion (up to 3%) were resistant to neutralization with antiserum specific for VSV. The latter particles, which were neutralized by antiserum to influenza A/WSN virus, are designated as VSV(WSN) pseudotypes. During mixed infections, both wild-type viruses were detected 1 to 2 h before either phenotypically mixed VSV or VSV(WSN) pseudotypes. Coincident with the appearance of cytopathic effects in the monolayer, the yield of pseudotypes rose dramatically. In contrast, in doubly infected BHK-21 cells, which do not show polarity in virus maturation sites and are not connected by tight junctions, VSV(WSN) pseudotypes were detected as soon as VSV titers rose to the minimum levels which allowed detection of pseudotypes, and the proportion observed remained relatively constant at later times. Examination of thin sections of doubly infected MDCK monolayers revealed that polarity in maturation sites was preserved for both viruses until approximately 12 h after inoculation with influenza virus, when disruption of junctional complexes was evident. Even at later periods, the majority of each virus type was associated with its normal membrane domain, suggesting that the sorting mechanisms responsible for directing the glycoproteins of VSV and influenza virus to separate surface domains continue to operate in doubly infected MDCK cells. The time course of VSV(WSN) pseudotype formation and changes in virus maturation sites are compatible with progressive mixing of viral glycoproteins at either intracellular or plasma membranes of doubly infected cells.  相似文献   

2.
In cultured Drosophila melanogaster cells, vesicular stomatitis virus (VSV) established a persistent, noncytopathic infection. No inhibition of host protein synthesis occurred even though all cells were initially infected. No defective interfering particles were detected, which would explain the establishment of the carrier state. In studies of the time course of viral protein synthesis in Drosophila cells, N, NS, and M viral polypeptides were readily detected within 1 h of infection. The yield of G protein and one of its precursors; G1, was very low at any time of the virus cycle; the released viruses always contained four to five times less G than those produced by chicken embryo cells, whatever the VSV strain or serotype used for infection and whatever the Drosophila cell line used as host. Actinomycin D added to the cells before infection enhanced VSV growth up to eight times. G and G1 synthesis increased much more than that of the other viral proteins when the cells were pretreated with the drug; nevertheless, the released viruses exhibited the same deficiency in G protein as the VSV released from untreated cells. Host cell control on both G-protein maturation process and synthesis at traduction level is discussed in relation to G biological properties.  相似文献   

3.
Vesicular stomatitis virus (VSV) infects and kills a wide range of cell types; however, the mechanisms involved in VSV‐mediated cell death are not fully understood. Here we show that VSV infection interferes with mitotic progression, resulting in cell death. This effect requires the interaction of VSV matrix (M) protein with the Rae1–Nup98 complex in mitosis, which is associated with a subset of ribonucleoproteins (RNPs). VSV displaced Rae1 from spindle poles, caused spindle abnormalities and triggered substantial cell death during metaphase. These effects were attenuated in cells infected with VSV expressing a mutant M protein that does not bind efficiently to the Rae1–Nup98–RNP complex. In cells that progressed to late mitosis, M protein prevented proper nuclear formation and chromatin decondensation. VSV is an oncolytic (anti‐tumour) agent as it preferentially replicates and kills tumour cells. As tumour cells have a high mitotic index, VSV‐mediated mitotic cell death probably contributes to its oncolytic activity.  相似文献   

4.
Influenza virus and vesicular stomatitis virus (VSV) obtain their lipid envelope by budding through the plasma membrane of infected cells. When monolayers of Madin-Darby canine kidney (MDCK) cells, a polarized epithelial cell line, are infected with fowl plague virus (FPV), an avian influenza virus, or with VSV, new FPV buds through the apical plasma membrane whereas VSV progeny is formed by budding through the basolateral plasma membrane. FPV and VSV were isolated from MDCK host cells prelabeled with [32P]orthophosphate and their phospholipid compositions were compared. Infection was carried out at 31 degrees C to delay cytopathic effects of the virus infection, which lead to depolarization of the cell surface. 32P-labeled FPV was isolated from the culture medium, whereas 32P-labeled VSV was released from below the cell monolayer by scraping the cells from the culture dish 8 h after infection. At this time little VSV was found in the culture medium, indicating that the cells were still polarized. The phospholipid composition of the two viruses was distinctly different. FPV was enriched in phosphatidylethanolamine and phosphatidylserine and VSV in phosphatidylcholine, sphingomyelin, and phosphatidylinositol. When MDCK cells were trypsinized after infection and replated, non-infected control cells attached to reform a confluent monolayer within 4 h, whereas infected cells remained in suspension. FPV and VSV could be isolated from the cells in suspension and under these conditions the phospholipid composition of the two viruses was very similar. We conclude that the two viruses obtain their lipids from the plasma membrane in the same way and that the different phospholipid compositions of the viruses from polarized cells reflect differences in the phospholipid composition of the two plasma membrane domains.  相似文献   

5.
Infections cause 13% of all cancers globally, and DNA tumour viruses account for almost 60% of these cancers. All viruses are obligate intracellular parasites and hijack host cell functions to replicate and complete their life cycles to produce progeny virions. While many aspects of viral manipulation of host cells have been studied, how DNA tumour viruses manipulate host cell metabolism and whether metabolic alterations in the virus life cycle contribute to carcinogenesis are not well understood. In this review, we compare the differences in central carbon and fatty acid metabolism in host cells following infection, oncogenic transformation, and virus-driven cancer of DNA tumour viruses including: Epstein–Barr virus, hepatitis B virus, human papillomavirus, Kaposi''s sarcoma-associated herpesvirus and Merkel cell polyomavirus.  相似文献   

6.
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic cancer. In this study, the oncolytic potentials of several VSV variants were analyzed in a panel of 13 clinically relevant human PDA cell lines and compared to conditionally replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV variants showed oncolytic abilities superior to those of other viruses, and some cell lines that exhibited resistance to other viruses were successfully killed by VSV. However, PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis, and several cell lines were resistant to all tested viruses. Resistant cells showed low levels of very early VSV RNA synthesis, indicating possible defects at initial stages of infection. In addition, unlike permissive PDA cell lines, most of the resistant cell lines were able to both produce and respond to interferon, suggesting that intact type I interferon responses contributed to their resistance phenotype. Four cell lines that varied in their permissiveness to VSV-ΔM51 and CRAd dl1520 were tested in mice, and the in vivo results closely mimicked those in vitro. While our results demonstrate that VSV is a promising oncolytic agent against PDA, further studies are needed to better understand the molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.  相似文献   

7.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

8.
Although two deoxyribonucleic acid (DNA) viruses, pseudorabies (PsRV) and vaccinia, are as susceptible as a ribonucleic acid (RNA) virus, vesicular stomatitis (VSV), to interferon when tested in chicken or mouse cells, they are refractory to inhibition in interferon-treated primary rabbit kidney cells and in a continuous line (RK-13) of rabbit kidney cells. Superinfection with VSV of RK-13 cells first infected with PsRV completely blocks the replication of PsRV with no effect on VSV yield. When the same experiment is carried out in RK-13 cells pretreated with 1,000 units of interferon, VSV replication is inhibited, which permits PsRV to replicate normally. These findings demonstrate that in the same cell one virus (PsRV) can be refractory to interferon and a second virus (VSV) can be susceptible. These experiments show that rabbit kidney cell cultures are deficient in the synthesis of resistance factors active against the DNA viruses tested and raise the possibility that separate resistance factors may exist for RNA and DNA viruses. In the case of sequential infection of interferon-treated RK-13 cells with vaccinia and VSV, it was found that not only was vaccinia replication refractory to inhibition by interferon, but also that prior infection with vaccinia was able to partially reverse the effect of the inhibitor on the replication of the VSV used for superinfection. On the basis of these and other data it is postulated that a vaccinia virion component or a replication product of vaccinia virus, or both, enables VSV to escape the inhibiting action of interferoninduced resistance factors.  相似文献   

9.
Matrix proteins (M) direct the process of assembly and budding of viruses belonging to the Mononegavirales order. Using the two-hybrid system, the amino-terminal part of vesicular stomatitis virus (VSV) M was shown to interact with dynamin pleckstrin homology domain. This interaction was confirmed by coimmunoprecipitation of both proteins in cells transfected by a plasmid encoding a c-myc-tagged dynamin and infected by VSV. A role for dynamin in the viral cycle (in addition to its role in virion endocytosis) was suggested by the fact that a late stage of the viral cycle was sensitive to dynasore. By alanine scanning, we identified a single mutation of M protein that abolished this interaction and reduced virus yield. The adaptation of mutant virus (M.L4A) occurred rapidly, allowing the isolation of revertants, among which the M protein, despite having an amino acid sequence distinct from that of the wild type, recovered a significant level of interaction with dynamin. This proved that the mutant phenotype was due to the loss of interaction between M and dynamin. The infectious cycle of the mutant virus M.L4A was blocked at a late stage, resulting in a quasi-absence of bullet-shaped viruses in the process of budding at the cell membrane. This was associated with an accumulation of nucleocapsids at the periphery of the cell and a different pattern of VSV glycoprotein localization. Finally, we showed that M-dynamin interaction affects clathrin-dependent endocytosis. Our study suggests that hijacking the endocytic pathway might be an important feature for enveloped virus assembly and budding at the plasma membrane.  相似文献   

10.
D P Fan  B M Sefton 《Cell》1978,15(3):985-992
We have compared the mechanisms of entry into host cells of three enveloped viruses: Sendai virus, vesicular stomatitis virus (VSV) and Sindbis virus. Virus entry by membrane fusion should antigenically modify the surface of a newly infected cell in such a way that it will be killed by anti-viral antibody and complement. On the other hand, virus entry by a mechanism involving uptake by the cell of the whole virion should not make cells sensitive to antibody and complement. As expected, cells newly infected with Sendai virus were readily and completely lysed by anti-Sendai antibody and complement. In marked contrast, however, cells newly infected with either Sindbis virus or VSV were killed by anti-viral antibody and complement only when infected at an extremely high multiplicity of infection, in excess of 1000 plaque-forming units per cell. We favor the following explanation for these results with Sindbis virus and VSV: a very large majority of the Sindbis and VSV virions entered the infected cells by some means other than membrane fusion, presumably engulfment of the whole particle. Efficient entry by way of membrane fusion may therefore not be a general characteristic of enveloped viruses.  相似文献   

11.
Analysis of viral glycoprotein expression on surfaces of monensin- treated cells using a fluorescence-activated cell sorter (FACS) demonstrated that the sodium ionophore completely inhibited the appearance of the vesicular stomatitis virus (VSV) G protein on (Madin- Darby canine kidney) MDCK cell surfaces. In contrast, the expression of the influenza virus hemagglutinin (HA) glycoprotein on the surfaces of MDCK cells was observed to occur at high levels, and the time course of its appearance was not altered by the ionophore. Viral protein synthesis was not inhibited by monensin in either VSV- or influenza virus-infected cells. However, the electrophoretic mobilities of viral glycoproteins were altered, and analysis of pronase-derived glycopeptides by gel filtration indicated that the addition of sialic acid residues to the VSV G protein was impaired in monensin-treated cells. Reduced incorporation of fucose and galactose into influenza virus HA was observed in the presence of the ionophore, but the incompletely processed HA protein was cleaved, transported to the cell surface, and incorporated into budding virus particles. In contrast to the differential effects of monensin on VSV and influenza virus replication previously observed in monolayer cultures of MDCK cells, yields of both viruses were found to be significantly reduced by high concentrations of monensin in suspension cultures, indicating that cellular architecture may play a role in determining the sensitivity of virus replication to the drug. Nigericin, an ionophore that facilitates transport of potassium ions across membranes, blocked the replication of both influenza virus and VSV in MDCK cell monolayers, indicating that the ion specificity of ionophores influences their effect on the replication of enveloped viruses.  相似文献   

12.
Vesicular stomatitis virus (VSV) is an animal virus that based on electron microscopy and its dependence on acidic cellular compartments for infection is thought to enter its host cells in a clathrin-dependent manner. The exact cellular mechanism, however, is largely unknown. In this study, we characterized the entry kinetics of VSV and elucidated viral requirements for host cell factors during infection in HeLa cells. We found that endocytosis of VSV was a fast process with a half time of 2.5 to 3 min and that acid activation occurred within 1 to 2 min after internalization in early endosomes. The majority of viral particles were endocytosed in a clathrin-based, dynamin-2-dependent manner. Although associated with some of the surface-bound viruses, the classical adaptor protein complex AP-2 was not required for infection. Time-lapse microscopy revealed that the virus either entered preformed clathrin-coated pits or induced de novo formation of pits. Dynamin-2 was recruited to plasma membrane-confined virus particles. Thus, VSV can induce productive internalization by exploiting a specific combination of the clathrin-associated proteins and cellular functions.  相似文献   

13.
Brain tumors classified as glioblastomas have proven refractory to treatment and generally result in death within a year of diagnosis. We used seven in vitro tests and one in vivo trial to compare the efficacy of nine different viruses for targeting human glioblastoma. Green fluorescent protein (GFP)-expressing vesicular stomatitis (VSV), Sindbis virus, pseudorabies virus (PRV), adeno-associated virus (AAV), and minute virus of mice i-strain (MVMi) and MVMp all infected glioblastoma cells. Mouse and human cytomegalovirus, and simian virus 40 showed only low levels of infection or GFP expression. VSV and Sindbis virus showed strong cytolytic actions and high rates of replication and spread, leading to an elimination of glioblastoma. PRV and both MVM strains generated more modest lytic effects and replication capacity. VSV showed a similar oncolytic profile on U-87 MG and M059J glioblastoma. In contrast, Sindbis virus showed strong preference for U-87 MG, whereas MVMi and MVMp preferred M059J. Sindbis virus and both MVM strains showed highly tumor-selective actions in glioblastoma plus fibroblast coculture. VSV and Sindbis virus were serially passaged on glioblastoma cells; we isolated a variant, VSV-rp30, that had increased selectivity and lytic capacity in glioblastoma cells. VSV and Sindbis virus were very effective at replicating, spreading within, and selectively killing human glioblastoma in an in vivo mouse model, whereas PRV and AAV remained at the injection site with minimal spread. Together, these data suggest that four (VSV, Sindbis virus, MVMi, and MVMp) of the nine viruses studied merit further analysis for potential therapeutic actions on glioblastoma.  相似文献   

14.
PSEUDOTYPES of vesicular stomatitis virus (VSV) with the coat of avian myeloblastosis (AMV) or murine leukaemia viruses—VSV(AMV) and VSV(MLV)—can be produced by growing VSV in chick cells preinfected with AMV or in mouse cells preinfected with MLV1. The VSV particles carrying their own neutralization antigen and double-neutralizable particles may be inactivated with antiserum against VSV. The surviving pseudotypes possess neutralization, host-range and interference specificities corresponding to the tumour virus donating their coat. It has also been shown that a conditional lethal mutant of VSV in which a structural protein is affected is complemented under restrictive conditions with AMV. This mutant, ts-45, when complemented with AMV again predominantly produces the pseudotype VSV(AMV).  相似文献   

15.
The role of essential fatty acids in membrane functions related to receptor-mediated endocytosis of vesicular stomatitis virus (VSV) was investigated using a human laryngeal carcinoma cell line (HEp-2) grown in chemically defined serum-free medium (DM) to deplete their essential fatty acid contents. VSV replicated much less effectively in HEp-2 cells grown in DM as compared to serum containing complete medium (CM). Observed reduction in the rate of virus multiplication was, at least in part, due to reduced virus penetration which was monitored using VSV labeled with nitroxyl free radicals as electron spin probe. Surface proteins of VSV were labeled with maleimide spin-label, and succinimide spin-label. Ni2+ was used as a broadening agent to identify the spin-label signals from viruses inside the cell. HEp-2 cells and mouse leukemia cell line L1210 treated with 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) cadaverine, an agent previously shown to inhibit the uptake of VSV in vitro, was used as a positive control in some experiments. VSV penetrated less effectively in both DM-grown cells and in CM-grown cells in the presence of dansylcadaverine. Similar results were obtained by monitoring the uptake of 125I-labeled VSV. When HEp-2 cells grown for several generations in DM were incubated with 10% fetal calf serum for 16 h, the cells supported virus replication to a similar extent as the cells grown in CM. In contrast, addition of arachidonic acid restored VSV growth only partially. Continued growth of HEp-2 cells in DM resulted in a shift in fatty acyl chain composition of phospholipids. The results indicate a finite role for essential fatty acids in receptor-mediated internalization of virus particles.  相似文献   

16.
We have isolated a mutant line of mouse L cells, termed gro29, in which the growth of herpes simplex virus (HSV) and vesicular stomatitis virus (VSV) is defective. The block occurs late in the infectious cycle of both viruses. We demonstrate that HSV and VSV enter gro29 cells normally, negotiate the early stages of infection, yet are impaired at a late stage of virus maturation. During VSV infection of the mutant cell line, intracellular transport of its glycoprotein (G protein) is slowed. Pulse-chase experiments showed that oligosaccharide processing is impeded, and immunofluorescence localization revealed an accumulation of G protein in a juxtanuclear region that contains the Golgi complex. We conclude that export of newly made glycoproteins is defective in gro29 cells, and speculate that this defect may reflect a lesion in the glycoprotein transport apparatus.  相似文献   

17.
After a single dose of an anticancer agent, changes due to cell death are expected to occur in the distribution of cells between proliferating and quiescent compartment as well as in the oxygenation and nutritional state of surviving cells. These changes are transient because tumour regrowth tends to restore the pretreatment status. The reoxygenation due to the decrease of oxygen consumption is expected to induce cell recruitment from quiescence into proliferation, and consequently to increase the sensitivity of the cell population to a successive treatment by a cycle-specific drug. In previous papers we proposed a model of the response of tumour cords (cylindrical arrangements of tumour cells growing around a blood vessel of the tumour) to single-dose treatments. The model included the motion of cells and oxygen diffusion and consumption. On the basis of that model suitably extended to better account for the action of anticancer drugs, we study the time course of the oxygenation and of the redistribution of cells between the proliferating and quiescent compartments. By means of simulations of the response to a dose delivered as two spaced equal fractions, we investigate the dependence of tumour response on the spacing between the fractions and on the main parameters of the system. A time window may be found in which the delivery of two fractions is more effective than the delivery of the undivided dose.  相似文献   

18.
Replication-defective vaccine vectors based on vesicular stomatitis virus (VSV) lacking its envelope glycoprotein gene (G) are highly effective in animal models. However, such ΔG vectors are difficult to grow because they require complementation with the VSV G protein. In addition, the complementing G protein induces neutralizing antibodies in animals and thus limits multiple vector applications. In the process of generating an experimental Nipah virus (a paramyxovirus) vaccine, we generated two defective VSVΔG vectors, each expressing one of the two Nipah virus (NiV) glycoproteins (G and F) that are both required for virus entry to host cells. These replication-defective VSV vectors were effective at generating NiV neutralizing antibody in mice. Most interestingly, we found that these two defective viruses could be grown together and passaged in tissue culture cells in the absence of VSV G complementation. This mixture of complementing defective viruses was also highly effective at generating NiV neutralizing antibody in animals. This novel approach to growing and producing a vaccine from two defective viruses could be generally applicable to vaccine production for other paramyxoviruses or for other viruses where the expression of at least two different proteins is required for viral entry. Such an approach minimizes biosafety concerns that could apply to single, replication-competent VSV recombinants expressing all proteins required for infection.  相似文献   

19.
Chronic lymphocytic leukemia (CLL) is characterized by clonal accumulation of CD5+ CD19+ B lymphocytes that are arrested in the G0/G1 phase of the cell cycle and fail to undergo apoptosis because of overexpression of the antiapoptotic B-cell CLL/lymphoma 2 (BCL-2) protein. Oncolytic viruses, such as vesicular stomatitis virus (VSV), have emerged as potential anticancer agents that selectively target and kill malignant cells via the intrinsic mitochondrial pathway. Although primary CLL cells are largely resistant to VSV oncolysis, we postulated that targeting the apoptotic pathway via inhibition of BCL-2 may sensitize CLL cells to VSV oncolysis. In the present study, we examined the capacity of EM20-25—a small-molecule antagonist of the BCL-2 protein—to overcome CLL resistance to VSV oncolysis. We demonstrate a synergistic effect of the two agents in primary ex vivo CLL cells (combination index of 0.5; P < 0.0001). In a direct comparison of peripheral blood mononuclear cells from healthy volunteers with primary CLL, the two agents combined showed a therapeutic index of 19-fold; furthermore, the combination of VSV and EM20-25 increased apoptotic cell death in Karpas-422 and Granta-519 B-lymphoma cell lines (P < 0.005) via the intrinsic mitochondrial pathway. Mechanistically, EM20-25 blocked the ability of the BCL-2 protein to dimerize with proapoptotic BAX protein, thus sensitizing CLL to VSV oncolytic stress. Together, these data indicate that the use of BCL-2 inhibitors may improve VSV oncolysis in treatment-resistant hematological malignancies, such as CLL, with characterized defects in the apoptotic response.  相似文献   

20.
Interferon (IFN) mediates its antiviral effects by inducing a number of responsive genes, including the double-stranded RNA (dsRNA)-dependent protein kinase, PKR. Here we report that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant. We determined that the mechanism of influenza virus-induced apoptosis involved death signaling through FADD/caspase-8 activation, while other viruses such as vesicular stomatitis virus (VSV) and Sindbis virus (SNV) did not significantly provoke PKR-mediated apoptosis but did induce cytolysis of fibroblasts via activation of caspase-9. Significantly, treatment with IFN-alpha/beta greatly sensitized the fibroblasts to FADD-dependent apoptosis in response to dsRNA treatment or influenza virus infection but completely protected the cells against VSV and SNV replication in the absence of any cellular destruction. The mechanism by which IFN increases the cells' susceptibility to lysis by dsRNA or certain virus infection is by priming cells to FADD-dependent apoptosis, possibly by regulating the activity of the death-induced signaling complex (DISC). Conversely, IFN is also able to prevent the replication of viruses such as VSV that avoid triggering FADD-mediated DISC activity, by noncytopathic mechanisms, thus preventing destruction of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号