首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normal development of shoot structures depends on controlling the growth, proliferation and differentiation of cells derived from the shoot apical meristem. We have identified the CYP78A5 gene encoding a putative cytochrome P450 monooxygenase that is the first member of the CYP78 family from Arabidopsis. This gene is strongly expressed in the peripheral regions of the vegetative and reproductive shoot apical meristems, defining a boundary between the central meristematic zone and the developing organ primordia. In addition, CYP78A5 shows a dynamic pattern of expression during floral development. Overexpression of CYP78A5 affects multiple cell types, causing twisting and kinking of the stem and defects in floral development. To define the relationship of CYP78A5 to genes controlling meristem function, we examined CYP78A5 expression in plants mutant for SHOOT MERISTEMLESS, ZWILLE and ARGONAUTE, and have found that CYP78A5 expression is altered in these mutant backgrounds. We propose that CYP78A5 has a role in regulating directional growth in the peripheral region of the shoot apical meristem in response to cues established by genes regulating meristem function.  相似文献   

2.
Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.  相似文献   

3.
In the absence of sexual recombination somatic mutations represent the only source of genetic variation in clonally propagating plants. We analyse the probability of such somatic mutations in the shoot apical meristem being fixed in descendant generations of meristems. A model of meristem cell dynamics is presented for the unstratified shoot apical meristem. The fate of one mutant initial is studied for a two- and three-celled shoot apical meristem. The main parameters of the model are the number of apical initials, the time between selection cycles, number of selection cycles and cell viability of the mutant genotype. As the number of mitotic divisions per selection cycle and number of selection cycles increases the chimeric state dissipates and the probability of mutation fixation approaches an asymptote. The value of this fixation asymptote depends primarily on cell viability, while the time to reach it is mainly influenced by the total number of mitotic divisions as well as the number of initials. In contrast to the presumed operation of Muller’s Ratchet in plants the chimeric state may represent an opportunity for deleterious mutations to be eliminated through intraorganismal selection or random drift. We conclude that intraorganismal selection not only can be a substantial force for the elimination of deleterious mutations, but also can have the potential to confer an evolutionary change through a meristematic cell lineage alone.  相似文献   

4.
5.
Early events of multiple bud formation and shoot development in germinating soybean embryonic axes treated for 24 hr with the cytokinin, 6-benzylaminopurine (BAP), were compared to the development of untreated control axes using four different techniques: photomicrography, scanning electron microscopy, histology, and autoradiography. Shoot apex development in BAP-treated embryonic axes was delayed by about 9 to 15 hr. A transient inhibition of DNA synthesis in the primary apical meristem and axillary buds was observed with subsequent changes in the timing of cell division patterns in these regions. Meristematic regions (supernumerary vegetative buds) were observed in BAP-treated axes around the perimeter of the apical dome at and above the level of the axillary buds. Cells elongated from some of the BAP-induced meristematic regions to form four to six shoots. In the absence of BAP, excision of the primary apical meristem and/or axillary buds did not result in multiple bud formation. These results suggest that transient exposure to BAP interrupted chromosomal DNA replication and reprogrammed the developmental fate of a large number of cells in the shoot apex. We postulate that interruption of DNA synthesis, either directly, by interfering with DNA replication, or indirectly, by preventing entry into S-phase, effected redetermination of the shoot apex cells.  相似文献   

6.
7.
8.
Shoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life.  相似文献   

9.
In higher plants, post-embryonic development is dependent on the activity of the root and shoot apical meristem (RAM and SAM). The quiescent center (QC) in the RAM and the organizing center (OC) in the SAM are known to be essential for the maintenance of meristematic activity. To understand the mechanism that maintains post-embryonic meristems, we isolated an Arabidopsis mutant, halted root (hlr). In this mutant, the cellular organization was disrupted in post-embryonic meristems both in the root and in the shoot, and their meristematic activity was reduced or became abnormal. We showed that the mutant RAM lost its QC identity after germination, which was specified during embryogenesis, whereas the identity of differentiated tissues was maintained. In the post-embryonic SAM, the expression pattern of a typical OC marker gene, WUSCHEL, was disturbed in the mutant. These observations indicate that the HLR gene is essential to maintain the cellular organization and normal nature of the RAM and SAM. The HLR gene encodes RPT2a, which is a subunit of the 26S proteasome that degrades key proteins in diverse cellular processes. We showed that the HLR gene was expressed both in the RAM and in the SAM, including in the QC and the OC, respectively, and that the activity of proteasomes were reduced in the mutant. We propose that proteasome-dependent programmed proteolysis is required to maintain the meristem integrity both in the shoot and in the root.  相似文献   

10.
The embryo of the reduced form of the lanceolate mutant in tomato fails to undergo the heart-shaped stage of development. Cells in the shoot apical region of this leafless mutant lose their meristematic character and develop into mature parenchyma during embryogenesis. This early loss of meristem tissue leads to the determinate growth which is evident in the seedling. In contrast to normal, starch grains are visible with the light microscope in cells of the shoot tip of the mutant hypocotyl from early embryogeny up to and including the seedling stage, and protein bodies are abundant in the same tissue of fully developed mutant embryos. The shoot apical region in homozygous mutant embryos with cotyledons or cotyledon-like structures exhibits some cytochemical and morphological similarity with the normal shoot apex. Morphological variation in these forms appears to be in a continuous pattern. The extent of their development and consequent longevity is related to possible differences in rates of cell expansion and variation in environmental factors during the early stages of embryogenesis.  相似文献   

11.
12.
Sachs , R. M., A. Lang , C. F. Bretz and Joan Roach . (U. California, Los Angeles.) Shoot histogenesis: subapical meristematic activity in a caulescent plant and the action of gibberellic acid and Amo—1618. Amer. Jour. Bot. 47(4): 260—266. Illus. 1960.–Studies on gibbereilininduced stem formation in rosette plants (Sachs et al., 1959) have shown that a zone of intensive meristematic activity, arising below the existing apical meristem, is almost solely responsible for stem histogenesis, i.e., the formation of the cells constituting the elongate stem. An extensive subapical zone of meristematic activity is also present in caulescent plants, such as Chrysanthemum morifolium, Amo-1618 ([4-hydroxy-5 isopropyl-2 methylphenyl] trimethylammonium chloride, 1-piperidine carboxylate) completely inhibits subapical meristematic activity in chrysanthemum, causing the plants to assume a dwarfed, rosette-like habit of growth. Gibberellic acid, applied either simultaneously, or following the Amo—1618 treatment, completely prevents or reverses the effect of Amo—1618, making the plants retain or resume their normal growth habit. Amo—1618 and gibberellic acid have relatively little effect upon the activity of the apical meristem of Chrysanthemum. Thus, while the apical meristem proper (eu- or promeristem) is the site of shoot organization and the ultimate source of the cells of the entire shoot, the subapical zone of division, termed the subapical meristem, is largely responsible for stem histogenesis in caulescent as well as in rosette plants. Gibberellins, or native, gibberellin-like substances appear to regulate the activity of the subapical meristem and thus to play an important role in shoot development. Amo—1618 and related compounds seem to exert their dwarfing effect in plants by acting as antagonists of gibberellins, at least with respect to the latters' function in regulating the subapical meristematic activity in the shoot.  相似文献   

13.
Plant shoots undergo organogenesis throughout their life cycle via the perpetuation of stem cell pools called shoot apical meristems (SAMs). SAM maintenance requires the coordinated equilibrium between stem cell division and differentiation and is regulated by integrated networks of gene expression, hormonal signaling, and metabolite sensing. Here, we show that the maize (Zea mays) mutant bladekiller1-R (blk1-R) is defective in leaf blade development and meristem maintenance and exhibits a progressive reduction in SAM size that results in premature shoot abortion. Molecular markers for stem cell maintenance and organ initiation reveal that both of these meristematic functions are progressively compromised in blk1-R mutants, especially in the inflorescence and floral meristems. Positional cloning of blk1-R identified a predicted missense mutation in a highly conserved amino acid encoded by thiamine biosynthesis2 (thi2). Consistent with chromosome dosage studies suggesting that blk1-R is a null mutation, biochemical analyses confirm that the wild-type THI2 enzyme copurifies with a thiazole precursor to thiamine, whereas the mutant enzyme does not. Heterologous expression studies confirm that THI2 is targeted to chloroplasts. All blk1-R mutant phenotypes are rescued by exogenous thiamine supplementation, suggesting that blk1-R is a thiamine auxotroph. These results provide insight into the role of metabolic cofactors, such as thiamine, during the proliferation of stem and initial cell populations.  相似文献   

14.
Angle meristems are mounds of meristematic tissue located atdorsal and/or ventral branch points of the dichotomising stemaxes of many species of Selaginella (Lycophyta). The presentstudy examined the development of ventral angle shoots of S.martensii in response to removal of distal shoot apices (decapitation).Scanning electron microscopy of sequential replicas of developingangle meristems and angle shoots revealed that for the firsttwo pseudowhorls of leaf primordia, particular leaves are notattributable to particular merophytes of the angle meristemapical cell. Individual leaf primordia of the first (outer)pseudowhorl often form from more than one merophyte. Neitherthe shape of the angle meristem apical cell nor the directionof segmentation has any effect on the development of the angleshoot. Additionally, the apical cell of the angle meristem doesnot necessarily contribute directly to either of the new shootapices of the developing angle shoot. The first bifurcationof the angle shoot shows a remarkably consistent relationshipto the branching pattern of the parent shoot. The strong branchof the first angle shoot bifurcation typically occurs towardthe weak side branch of the parent shoot. Anatomical studiesshowed that bifurcation of the young angle shoot involved theformation of two new growth centres some distance away fromthe original angle meristem apical cell; new apical cells subsequentlyformed within these. These results provide additional supportfor the view that cell lineage has little or no effect on finalform or structure in plants.Copyright 1994, 1999 Academic Press Selaginella martensii Spring, Lycophyta, angle meristem, apical cell, shoot apical meristem, leaf primordium, branching, dichotomy, morphogenesis, determination, competence, development, mould and cast technique, replica technique, scanning electron microscopy  相似文献   

15.
Post-embryonic plant growth is dependent on a functional shoot apical meristem (SAM) that provides cells for continuous development of new aerial organs. However, how the SAM is dynamically maintained during vegetative development remains largely unclear. We report here the characterization of a new SAM maintenance mutant, sha1-1 (shoot apical meristem arrest 1-1), that shows a primary SAM-deficient phenotype at the adult stage. The SHA1 gene encodes a novel RING finger protein, and is expressed most intensely in the shoot apex. We show that, in the sha1-1 mutant, the primary SAM develops normally during the juvenile vegetative stage, but cell layer structure becomes disorganized after entering the adult vegetative stage, resulting in a dysfunctional SAM that cannot initiate floral primordia. The sha1-1 SAM terminates completely at the stage when the wild-type begins to bolt, producing adult plants with a primary inflorescence-deficient phenotype. These observations indicate that SHA1, a putative E3 ligase, is required for post-embryonic SAM maintenance by controlling proper cellular organization.  相似文献   

16.
17.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

18.
The shoot apical meristem is a group of rapidly dividing cells that generate all aerial parts of the plant. It is a highly organised structure, which can be divided into functionally distinct domains, characterised by specific proliferation rates of the individual cells. Genetic studies have enabled the identification of regulators of meristem function. These factors are involved in the formation and maintenance of the meristem, as well as in the formation of the primordia. Somehow, they must also govern cell proliferation rates within the shoot apex. Possible links between meristem regulators and the cell cycle machinery will be discussed. In order to analyse the role of cell proliferation in development, cell cycle gene expression has been perturbed using transgenic approaches and mutation. The effect of these alterations on growth and development at the shoot apex will be presented. Together, these studies give a first insight into the regulatory networks controlling the cell cycle and into the significance of cell proliferation in plant development.  相似文献   

19.
As the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter‐dependence of cell‐cycle machinery and meristem‐organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell‐cycle machinery in the shoot apex by expression of a dominant negative allele of the A‐type cyclin‐dependent kinase (CDK) CDKA;1 in meristematic cells. A decrease in the cell division rate within the SHOOT MERISTEMLESS domain of the shoot apex dramatically affected plant growth and development. Within the meristem, a subset of cells was driven into the differentiation pathway, as indicated by premature cell expansion and onset of endo‐reduplication. Although the meristem structure and expression patterns of the meristem identity genes were maintained in most plants, the reduced CDK activity caused splitting of the meristem in some plants. This phenotype correlated with the level of expression of the dominant negative CDKA;1 allele. Therefore, we propose a threshold model in which the effect of the cell‐cycle machinery on meristem organization is determined by the level of CDK activity.  相似文献   

20.
An increase in the proliferative activity of a shoot apical meristem (SAM) and the further accumulation of a pool of undifferentiated cells (fasciation) results in phyllotaxis changes. In the case of Arabidopsis thaliana, a typical spiral leaf arrangement is replaced by an opposite or verticillate one (depending on the level of a fasciation manifestation). Pistil development in mutant plants is accompanied by the appearance of a group of undifferentiated meristematic cells in its central part. The addition of N-1-naphthylphthalamic acid (NPA) causes an increase in the meristem volume and number of stipules in both mutant and control plants. The NPA effect on the floral morphogenesis results in a significant growth of meristemic cell pool. The interaction of different mechanisms of a meristem volume control is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号