首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and energy supply, sufficient for maintenance of cellular viability and integrity but insufficient for growth. When glucose-limited retentostats cultivated under extreme calorie restriction were subjected to glucose starvation, calorie-restricted and glucose-starved cells were found to share characteristics such as increased heat-shock tolerance and expression of quiescence-related genes. However, they also displayed strikingly different features. While calorie-restricted yeast cultures remained metabolically active and viable for prolonged periods of time, glucose starvation resulted in rapid consumption of reserve carbohydrates, population heterogeneity due to appearance of senescent cells and, ultimately, loss of viability. Moreover, during starvation, calculated rates of ATP synthesis from reserve carbohydrates were 2-3 orders of magnitude lower than steady-state ATP-turnover rates calculated under extreme calorie restriction in retentostats. Stringent reduction of ATP turnover during glucose starvation was accompanied by a strong down-regulation of genes involved in protein synthesis. These results demonstrate that extreme calorie restriction and carbon starvation represent different physiological states in S. cerevisiae.  相似文献   

4.
5.
Nutrient starvation is a common occurrence for filamentous fungi. To better understand the effects of starvation, we used a parallel plate flow chamber to study individual fungal mycelia when subjected to a step change in glucose concentration. We report the presence of a finite "lag time" in starved mycelia during which they ceased to grow/extend while switching from growth on exogenous carbon to re-growth on endogenous carbon. This lag time precedes other morphological or physiological changes such as change in growth rate (50-70% reduction), vacuolation (up to 16%), and decreased hyphal diameter (almost 50% reduction). Data suggests that during lag time, vacuolar degradation produces sufficient endogenous carbon to support survival and restart hyphal extension. Lag time is inversely related to the size of the mycelium at the time of starvation, which suggests a critical flow of endogenous carbon to the apical tip. We present a mathematical model consistent with our experimental observations that relate lag time, area, and flow of endogenous carbon.  相似文献   

6.
The Woronin body is a peroxisome-derived dense-core vesicle that is specific to several genera of filamentous ascomycetes, where it has been shown to seal septal pores in response to cellular damage. The Hexagonal peroxisome (Hex1) protein was recently identified as a major constituent of the Woronin body and shown to be responsible for self-assembly of the dense core of this organelle. Using a mutation in the Magnaporthe grisea HEX1 ortholog, we define a dual and essential function for Woronin bodies during the pathogenic phase of the rice blast fungus. We show that the Woronin body is initially required for proper development and function of appressoria (infection structures) and subsequently necessary for survival of infectious fungal hyphae during invasive growth and host colonization. Fungal mycelia lacking HEX1 function were unable to survive nitrogen starvation in vitro, suggesting that in planta growth defects are a consequence of the mutant's inability to cope with nutritional stress. Thus, Woronin body function provides the blast fungus with an important defense against the antagonistic and nutrient-limiting environment encountered within the host plant.  相似文献   

7.
8.
Haploid Saccharomyces cerevisiae cells growing on media lacking glucose but containing high concentrations of carbon sources such as fructose, galactose, raffinose, and ethanol exhibit enhanced agar invasion. These carbon sources also promote diploid filamentous growth in response to nitrogen starvation. The enhanced invasive and filamentous growth phenotypes are suppressed by the addition of glucose to the media and require the Snf1 kinase. Mutations in the PGI1 and GND1 genes encoding carbon source utilization enzymes confer enhanced invasive growth that is unaffected by glucose but requires active Snf1. Carbon source does not modulate FLO11 flocculin expression, but enhanced polarized bud site selection is necessary for invasion on certain carbon sources. Interestingly, deletion of SNF1 blocks invasion without affecting bud site selection. Snf1 is also required for formation of spokes and hubs in multicellular mats. To examine glucose repression of invasive growth more broadly, we performed genome-wide microarray expression analysis in wild-type cells growing on glucose and galactose, and snf1 Delta cells on galactose. SNF1 probably mediates glucose repression of multiple genes potentially involved in invasive and filamentous growth. FLO11-independent cell-cell attachment, cell wall integrity, and/or polarized growth are affected by carbon source metabolism. In addition, derepression of cell cycle genes and signalling via the cAMP-PKA pathway appears to depend upon SNF1 activity during growth on galactose.  相似文献   

9.
Physiological and morphological changes in carbon-limited autolyzing cultures of Aspergillus nidulans were described. The carbon starvation arrested conidiation while the formation of filamentous and "yeast-like" hyphal fragments with profoundly altered metabolism enabled the fungus to survive the nutritional stress. The morphological and physiological stress responses, which maintained the cellular integrity of surviving hyphal fragments at the expense of autolyzing cells, were highly concerted and regulated. Moreover, sublethal concentrations of the protein synthesis inhibitor cycloheximide or the mitochondrial uncoupler 2,4-dinitrophenol completely blocked the autolysis. In accordance with the propositions of the free-radical theory of ageing reactive oxygen species accumulated in the surviving fragments with a concomitant increase in the specific superoxide dismutase activity and a continuous decrease in cell viability. Glutathione was degraded extensively in carbon-starving cells due to the action of gamma-glutamyltranspeptidase, which resulted in a glutathione-glutathione disulfide redox imbalance during autolysis.  相似文献   

10.
Pseudohyphal differentiation in the budding yeast Saccharomyces cerevisiae is induced in diploid cells in response to nitrogen starvation and abundant fermentable carbon source. Filamentous growth requires at least two signaling pathways: the pheromone responsive MAP kinase cascade and the Gpa2p-cAMP-PKA signaling pathway. Recent studies have established a physical and functional link between the Galpha protein Gpa2 and the G protein-coupled receptor homolog Gpr1. We report here that the Gpr1 receptor is required for filamentous and haploid invasive growth and regulates expression of the cell surface flocculin Flo11. Epistasis analysis supports a model in which the Gpr1 receptor regulates pseudohyphal growth via the Gpa2p-cAMP-PKA pathway and independently of both the MAP kinase cascade and the PKA related kinase Sch9. Genetic and physiological studies indicate that the Gpr1 receptor is activated by glucose and other structurally related sugars. Because expression of the GPR1 gene is known to be induced by nitrogen starvation, the Gpr1 receptor may serve as a dual sensor of abundant carbon source (sugar ligand) and nitrogen starvation. In summary, our studies reveal a novel G protein-coupled receptor senses nutrients and regulates the dimorphic transition to filamentous growth via a Galpha protein-cAMP-PKA signal transduction cascade.  相似文献   

11.
12.
13.
14.
Nitrogen starvation can induce cellular triacylglycerol (TAG) accumulation in different organisms with an unclear mechanism. In this study, we performed nutrient starvation and lipid droplet (LD) proteomics analyses of the filamentous fungus Metarhizium robertsii. Our results indicated that nitrogen starvation activated cell autophagic activity but inhibited the internalization of LDs into vacuoles for degradation. LD proteomic analyses identified an array of differentially accumulated proteins including autophagy-related (ATG) proteins, heat shock proteins, TAG metabolic and phospholipid biosynthetic enzymes when the fungus was grown in different nutrient conditions. In contrast to the highly activated MrATG8, the ATG proteins involved in vacuolar LD internalization were down-regulated after nitrogen starvation. Cellular TAG contents were increased in different ATG-gene null mutants of M. robertsii. In addition, TAG increase could be due to the up-regulation of TAG biogenesis along with the down-regulation of TAG catabolic enzymes in fungal cells after nitrogen deprivation. The data of this study benefit our understanding of the mechanism of nitrogen starvation induced TAG increase in different cells.  相似文献   

15.
Autophagy is a well-known degradation system, induced by nutrient starvation, in which cytoplasmic components and organelles are digested via vacuoles/lysosomes. Recently, it was reported that autophagy is involved in the turnover of cellular components, development, differentiation, immune responses, protection against pathogens, and cell death. In this study, we isolated the ATG8 gene homologue Aoatg8 from the filamentous fungus Aspergillus oryzae and visualized autophagy by the expression of DsRed2-AoAtg8 and enhanced green fluorescent protein-AoAtg8 fusion proteins in this fungus. While the fusion proteins were localized in dot structures which are preautophagosomal structure-like structures under normal growth conditions, starvation or rapamycin treatment caused their accumulation in vacuoles. DsRed2 expressed in the cytoplasm was also taken up into vacuoles under starvation conditions or during the differentiation of conidiophores and conidial germination. Deletion mutants of Aoatg8 did not form aerial hyphae and conidia, and DsRed2 was not localized in vacuoles under starvation conditions, indicating that Aoatg8 is essential for autophagy. Furthermore, Aoatg8 conditional mutants showed delayed conidial germination in the absence of nitrogen sources. These results suggest that autophagy functions in both the differentiation of aerial hyphae and in conidial germination in A. oryzae.  相似文献   

16.
17.
18.
Role of microtubules in tip growth of fungi   总被引:1,自引:0,他引:1  
Polarized cell growth is observed ubiquitously in all living organisms. Tip growth of filamentous fungi serves as a typical model for polar growth. It is well known that the actin cytoskeleton plays a central role in cellular growth. In contrast, the role of microtubules in polar growth of fungal tip cells has not been critically addressed. Our recent study, using a green fluorescent protein (GFP)-labeled tubulin-expressing strain of the filamentous fungus Aspergillus nidulans and treatment with an anti-microtubule reagent, revealed that microtubules are essential for rapid hyphal growth. Our results indicated that microtubule organization contributes to continuous tip growth throughout the cell cycle, which in turn enables the maintenance of an appropriate mass of cytoplasm for the multinucleate system. In filamentous fungi, the microtubule is an essential component of the tip growth machinery that enables continuous and rapid growth. Recent research developments are starting to elucidate the components of the tip growth machinery and their functions in many organisms. This recent knowledge, in turn, is starting to enhance the importance of fungal systems as simple model systems to understand the polar growth of cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号