首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) play a pivotal role in host defense against invaded pathogens including fungi, while DCs are targeted by fungi for deleterious regulation of the host immune response. A few studies have reported fungal modulation of DC function in these immunocompromised AIDS patients. Cryptococcus neoformans (C. neoformans) is referred as one of the opportunistic fungi of AIDS. Here, we isolated native C. neoformans from an AIDS patient and investigated its effects on DC activation and function. Stimulation of C. neoformans matured DCs, and enhanced DC-mediated HIV-1 trans-infection; moreover, C. neoformans-stimulated DCs promoted the activation of resting T cells and provided more susceptible targets for HIV-1 infection. Microbial translocation has been proposed as the cause of systemic immune activation in chronic HIV-1 infection. Understanding the potential effects of pathogens on HIV-1-DC interactions could help elucidate viral pathogenesis and provide a new insight for against the spread of HIV.  相似文献   

2.
3.
Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs). Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR) signaling. Supporting this fact, TLR2−/− DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively) through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.  相似文献   

4.
树突状细胞免疫调节作用及其信号转导机制   总被引:2,自引:0,他引:2  
Xu S  Yao YM  Sheng ZY 《生理科学进展》2006,37(4):313-318
树突状细胞(DC)是最强效的抗原提呈细胞。,在抗原的刺激下,DC通过趋化因子作用由外周组织迁移至淋巴组织和器官,同时上调主要组织相容性复合体分子、共刺激分子和黏附分子的表达,分泌细胞因子,获得预激幼稚T细胞的独特能力。DC通过不同的受体吞饮、吞噬和胞吞抗原,例如C型凝集素受体捕获和呈递抗原,通过Toll样受体识别病原体和激活DC。本文主要综述了DC的免疫调节效应及其不同病原体识别受体活化和细胞内信号机制。  相似文献   

5.
Dendritic cells (DC) are professional antigen-presenting cells with a unique T-cell stimulatory aptitude that play a crucial role in the instruction of adaptive immune responses upon infection. By controlling the initiation of a diverse set of effector functions, which are suitable for the elimination of a wide range of pathogens, DCs form the pivotal link between the innate and the adaptive immune system. The innate pattern recognition pathways that trigger DC activation are central for skewing of the adaptive immune responses that are subsequently induced. Thus innate activation not only precedes adaptive immune activation, it also controls it and tailors the effector functions to the requirements of the infection. The adaptive immune response has to match the nature of the infection, but this does not only concern the type of pathogen, it is also affected by the localization of the infection. Tissue homeostasis has to be ensured and thus tissue-derived environmental factors influence the functional activity of activated DCs and thereby contribute to shaping of the immune response. Adaptive immune responses are vital for the elimination of pathogens, have the potential to attack tumor cells and play a detrimental role during transplant rejection and in a variety of autoimmune diseases. Better understanding of the mechanisms that control the induction of different T-cell effector functions will enable the development of strategies to manipulate the immune system in the context of vaccination, tumor immunotherapy, transplantation and autoimmunity.  相似文献   

6.
Dendritic cells (DCs) are professional APCs with the unique ability to activate naive T cells, which is required for initiation of the adaptive immune response against pathogens. Therefore, interfering with DC function would be advantageous for pathogen survival and dissemination. In this study we provide evidence suggesting that Salmonella enterica serovar typhimurium, the causative agent of typhoid disease in the mouse, interferes with DC function. Our results indicate that by avoiding lysosomal degradation, S. typhimurium impairs the ability of DCs to present bacterial Ags on MHC class I and II molecules to T cells. This process could correspond to a novel mechanism developed by this pathogen to evade adaptive immunity. In contrast, when S. typhimurium is targeted to FcgammaRs on DCs by coating bacteria with Salmonella-specific IgG, bacterial Ags are efficiently processed and presented on MHC class I and class II molecules. This enhanced Ag presentation leads to a robust activation of bacteria-specific T cells. Laser confocal microscopy experiments show that virulent S. typhimurium is rerouted to the lysosomal degradation pathway of DCs when internalized through FcgammaR. These observations are supported by electron microscopy studies demonstrating that internalized S. typhimurium shows degradation signs only when coated with IgG and captured by FcgammaRs on DCs. Therefore, our data support a potential role for bacteria-specific IgG on the augmentation of Ag processing and presentation by DCs to T cells during the immune response against intracellular bacteria.  相似文献   

7.
Host-microbe interactions: innate pattern recognition of fungal pathogens   总被引:1,自引:0,他引:1  
The recognition of fungi is mediated by germline pattern recognition receptors (PRRs) such as Toll-like receptors and lectin receptors that interact with conserved structures of the microorganisms, the pathogen-associated molecular patterns (PAMPs). Subsequently, PRRs activate intracellular signals that collaborate for the efficient activation of the host defense. The specificity of these responses is achieved through the activation of a particular mosaic of PRRs, that is determined by the available fungal PAMPs and the innate immune cells involved. This will determine a divergence of the final type of reaction, and in this way the innate host defense has the capability to deliver tailored responses to each pathogen.  相似文献   

8.
Targeting of Ags and therapeutics to dendritic cells (DCs) has immense potential for immunotherapy and vaccination. Because DCs are heterogeneous, optimal targeting strategies will require knowledge about functional specialization among DC subpopulations and identification of molecules for targeting appropriate DCs. We characterized the expression of a fungal recognition receptor, DC-associated C-type lectin-1 (Dectin-1), on mouse DC subpopulations and investigated the ability of an anti-Dectin-1 Ab to deliver Ag for the stimulation of immune responses. Dectin-1 was shown to be expressed on CD8alpha-CD4-CD11b+ DCs found in spleen and lymph nodes and dermal DCs present in skin and s.c. lymph nodes. Injection of Ag-anti-Dectin-1 conjugates induced CD4+ and CD8+ T cell and Ab responses at low doses where free Ag failed to elicit a response. Notably, qualitatively different immune responses were generated by targeting Ag to Dectin-1 vs CD205, a molecule expressed on CD8alpha+CD4-CD11b- DCs, dermal DCs, and Langerhans cells. Unlike anti-Dectin-1, anti-CD205 conjugates failed to elicit an Ab response. Moreover, when conjugates were injected i.v., anti-Dectin-1 stimulated a much stronger CD4+ T cell response and a much weaker CD8+ T cell response than anti-CD205. The results reveal Dectin-1 as a potential targeting molecule for immunization and have implications for the specialization of DC subpopulations.  相似文献   

9.
One of the most fundamental questions in biology is: "How do cells differentiate in the right place, at the right time, into the right kinds?" Understanding the phenomenon of cell differentiation in its spatial and temporal framework is a prelude to understanding the development and physiology of all multicellular systems, including the immune system. Insights over the past 2300 years, since Aristotle, suggest that biological differentiation is guided by the interplay between genetic programs and specific environmental signals. This is exemplified by the mammalian immune response to pathogens, where qualitatively different types can emerge. Although it is appreciated that this type immunity is critical for optimal defense against different pathogens, the early "decision-making mechanisms" are largely obscure. Recent developments in innate immunity and genomics, especially in the biology of dendritic cells (DCs) and pathogen recognition receptors, have stimulated intense research in understanding the mechanisms guiding the differentiation of Th1, Th2, and T regulatory responses. In this study, I summarize recent findings which suggest that activation of DCs via distinct pathogen recognition receptors stimulate different gene expression programs and signaling networks in DCs that guide the variegation of immune responses.  相似文献   

10.
Adaptive cellular immunity is required to clear HSV-1 infection in the periphery. Myeloid dendritic cells (DCs) are the first professional Ag-presenting cell to encounter the virus after primary and secondary infection and thus the consequences of their infection are important in understanding the pathogenesis of the disease and the response to the virus. Following HSV-1 infection, both uninfected and infected human DCs acquire a more mature phenotype. In this study, we demonstrate that type I IFN secreted from myeloid DC mediates bystander activation of the uninfected DCs. Furthermore, we confirm that this IFN primes DCs for elevated IL-12 p40 and p70 secretion. However, secretion of IFN is not responsible for the acquisition of a mature phenotype by HSV-1-infected DC. Rather, virus binding to a receptor on the cell surface induces DC maturation directly, through activation of the NF-kappaB and p38 MAPK pathways. The binding of HSV glycoprotein D is critical to the acquisition of a mature phenotype and type I IFN secretion. The data therefore demonstrate that DCs can respond to HSV exposure directly through recognition of viral envelope structures. In the context of natural HSV infection, the coupling of viral entry to the activation of DC signaling pathways is likely to be counterbalanced by viral disruption of DC maturation. However, the parallel release of type I IFN may result in paracrine activation so that the DCs are nonetheless able to mount an adaptive immune response.  相似文献   

11.
Dendritic cells (DCs) have an important function in the initiation and differentiation of immune responses, linking innate information to tailored adaptive responses. Depending on the pathogen invading the body, specific immune responses are built up that are crucial for eliminating the pathogen from the host. Host recognition of invading microorganisms relies on evolutionarily ancient, germline-encoded pattern recognition receptors (PRRs) that are highly expressed on the cell surface of DCs, of which the Toll-like receptors (TLRs) are well characterized and recognize bacterial or viral components. Moreover, they bind a variety of self-proteins released from damaged tissues including several heat-shock proteins. The membrane-associated C-type lectin receptors (CLRs) recognize glycan structures expressed by host cells of the immune system or on specific tissues, which upon recognition allow cellular interactions between DCs and other immune or tissue cells. In addition, CLRs can function as PRRs. In contrast to TLRs, CLRs recognize carbohydrate structures present on the pathogens. Modification of glycan structures on pathogens to mimic host glycans can thereby alter CLR interactions that subsequently modifies DC-induced polarization. In this review, we will discuss in detail how specific glycosylation of antigens can dictate both the innate and adaptive interactions that are mediated by CLRs on DCs and how this balances immune activation and inhibition of DC function.  相似文献   

12.
Dermatophytes are the most common agents of superficial mycoses that are caused by mold fungi. Trichophyton rubrum is the most common pathogen causing dermatophytosis. The immunology of dermatophytosis is currently poorly understood. Recently, our group investigated the interaction of T. rubrum conidia with peritoneal mouse macrophages. We found that macrophages phagocytose T. rubrum conidia resulted in a down-modulation of class II major histocompatibility complex (MHC) antigens and in the expression of co-stimulatory molecules. Furthermore, it induced the production of IL-10, and T. rubrum conidia differentiated into hyphae that grew and killed the macrophages after 8 hrs of culture. This work demonstrated that dendritic cells (DCs) and macrophages, from patients or normal individuals, avidly interact with pathogenic fungus T. rubrum. The dermatophyte has two major receptors on human monocyte-derived DC: DC-SIGN and mannose receptor. In contrast macrophage has only mannose receptor that participates in the phagocytosis or bound process. Another striking aspect of this study is that unlike macrophages that permit rapid growth of T. rubrum, human DC inhibited the growth and induces Th activation. The ability of DC from patients to interact and kill T. rubrum and to present Ags to T cells suggests that DC may play an important role in the host response to T. rubrum infection by coordinating the development of cellular immune response.  相似文献   

13.
14.
Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.

Authors Summary

Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage during fungal infection and restore immune balance after an infection has been cleared. By increasing the chitin content in the cell wall pathogenic fungi may influence the immune system in their favour, by down-regulating protective inflammatory immune responses. Furthermore, gene mutations and dysregulated enzyme activity in the described chitin recognition pathway are implicated in inflammatory conditions such as Crohn''s Disease and asthma, highlighting the importance of the discovered mechanism in human health.  相似文献   

15.
It is unclear whether the ability of the innate immune system to recognize distinct ligands from a single microbial pathogen via multiple pattern recognition receptors (PRRs) triggers common pathways or differentially triggers specific host responses. In the human mycobacterial infection leprosy, we found that activation of monocytes via nucleotide-binding oligomerization domain-containing protein 2 (NOD2) by its ligand muramyl dipeptide, as compared to activation via heterodimeric Toll-like receptor 2 and Toll-like receptor 1 (TLR2/1) by triacylated lipopeptide, preferentially induced differentiation into dendritic cells (DCs), which was dependent on a previously unknown interleukin-32 (IL-32)-dependent mechanism. Notably, IL-32 was sufficient to induce monocytes to rapidly differentiate into DCs, which were more efficient than granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived DCs in presenting antigen to major histocompatibility complex (MHC) class I-restricted CD8(+) T cells. Expression of NOD2 and IL-32 and the frequency of CD1b(+) DCs at the site of leprosy infection correlated with the clinical presentation; they were greater in patients with limited as compared to progressive disease. The addition of recombinant IL-32 restored NOD2-induced DC differentiation in patients with the progressive form of leprosy. In conclusion, the NOD2 ligand-induced, IL-32-dependent DC differentiation pathway contributes a key and specific mechanism for host defense against microbial infection in humans.  相似文献   

16.
17.
18.
19.
Cytokines that are induced by infection may contribute to the initiation of immune responses through their ability to stimulate dendritic cells (DCs). In this paper, we have addressed the role of IL-15 in DC activation, investigating its expression by DCs in response to three different signals of infection and examining its ability to stimulate DCs. We report that the expression of both IL-15 and the IL-15 receptor alpha-chain are increased in splenic DCs from mice inoculated with dsRNA (poly(I:C)), LPS, or IFN-alphabeta, and in purified murine splenic DCs treated with IFN-alphabeta in vitro. Furthermore, IL-15 itself was able to activate DCs, as in vivo or in vitro exposure of splenic DCs to IL-15 resulted in an up-regulation of costimulatory molecules, markedly increased production of IFN-gamma by DC and an enhanced ability of DCs to stimulate Ag-specific CD8(+) T cell proliferation. The magnitude of all of the IL-15-induced changes in DCs was reduced in mice deficient for the IFN-alphabeta receptor, suggesting a role for IFN-alphabeta in the stimulation of DCs by IL-15. These results identify IL-15 as a stimulatory cytokine for DCs with the potential for autocrine activity and link its effects to expression of IFN-alphabeta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号