首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The escape of ornamental plants is a main pathway of invasion into many ecosystems. Non-native plants can alter basal resources and abiotic factors leading to effects that ripple throughout an ecosystem. Invertebrates mediate these effects—responding quickly to abiotic and primary producer changes and, in turn, influencing other species. Invasions are of particular concern in the coastal sage scrub ecosystems of Southern California, where habitat loss and urban encroachment increase invasive species propagule sources and decrease native community resistance. The introduced annual Chrysanthemum coronarium (crown daisy) is a common invader with largely undocumented community-level effects. Our study tested the relationships between the invasive Chrysanthemum and a coastal scrub invertebrate community using a field study at the Tijuana River Estuary. We found similar or lower abundances and diversity of canopy fauna in the presence of Chrysanthemum. Community composition dramatically differed, however, in the presence Chrysanthemum, which was associated with higher abundances of dipterans, wasps and flower beetles, and lower abundances of hemipterans and thysanopterans than native shrubs. Differences in communities were consistent at the species- and order-levels, and were associated with the generally greater plant biomass and shadier conditions afforded by the natives. This study reveals that even a proportionally small amount of Chrysanthemum may shift the invertebrate community through alterations of abiotic properties and plant biomass. We recommend that Chrysanthemum be removed at the first sign of invasion or that spread is prevented since effects on the invertebrate community are dramatic and occur quickly.  相似文献   

2.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

3.
4.
Aim The biogeography of arbuscular mycorrhizal (AM) fungi is poorly understood, and consequently the potential of AM fungi to determine plant distribution has been largely overlooked. We aimed to describe AM fungal communities associating with a single host‐plant species across a wide geographical area, including the plant’s native, invasive and experimentally introduced ranges. We hypothesized that an alien AM plant associates primarily with the geographically widespread generalist AM fungal taxa present in a novel range. Location Europe, China. Methods We transplanted the palm Trachycarpus fortunei into nine European sites where it does not occur as a native species, into one site where it is naturalized (Switzerland), and into one glasshouse site. We harvested plant roots after two seasons. In addition, we sampled palms at three sites in the plant’s native range (China). Roots were subjected to DNA extraction, polymerase chain reaction (PCR) and 454 sequencing of AM fungal sequences. We analysed fungal communities with non‐metric multidimensional scaling (NMDS) ordination and cluster analysis and studied the frequency of geographically widespread fungal taxa with log‐linear analysis. We compared fungal communities in the roots of the palm with those in resident plants at one site in the introduced range (Estonia) where natural AM fungal communities had previously been studied. Results We recorded a total of 73 AM fungal taxa. AM fungal communities in the native and introduced ranges differed from one another, while those in the invasive range contained taxa present in both other ranges. Geographically widespread AM fungal taxa were over‐represented in palm roots in all regions, but especially in the introduced range. At the Estonian site, the palm was colonized by the same community of widespread AM fungal taxa as associate with resident habitat‐generalist plants; by contrast, resident forest‐specialist plants were colonized by a diverse community of widespread and other AM fungal taxa. Main conclusions AM fungal communities in the native, invasive and experimentally introduced ranges varied in taxonomic composition and richness, but they shared a pool of geographically widespread, non‐host‐specific taxa that might support the invasion of a generalist alien plant. Our dataset provides the first geographical overview of AM taxon distributions obtained using a single host‐plant species.  相似文献   

5.
Invasive species are cited as being a threat to communities and ecosystems worldwide, yet few studies have demonstrated invader impacts at these scales. Lack of historic data makes capturing large-scale community shifts problematic. We assessed long-term changes in invertebrate composition to the fouling community of a small estuary with relatively little boat traffic and no ballast water input (Morro Bay, CA). We also compared relative invasiveness of Morro Bay to international harbors (San Francisco Bay and Los Angeles/San Diego harbors). While the proportion of introduced species has not significantly changed from historic records, introduced species now occupy 86.00 % of the primary substrate. Other community shifts include; (1) a state shift to an invasive bryozoan (Watersipora subtorquata) dominated community, (2) a decrease in Mollusc richness and, (3) substantial shifts in abundance of certain species. Compared to larger more actively used harbors, Morro Bay has proportionally fewer introduced species (12.00 %) than San Francisco Bay (50.79 %) or Los Angeles/San Diego Harbors (26.23 %). Our study documents changes to a small relatively isolated estuary with little boat traffic and no ballast water input. We discuss the potential role of invasive species and other natural and anthropogenic factors as drivers of these community wide shifts. Specifically, we discuss how reintroduction of the Southern Sea Otter (Enhydra lutris nereis), an increase in sea stars (Pisaster spp.), climate change and interaction amongst potential drivers support the patterns of shifts in the Morro Bay community.  相似文献   

6.
Most research on the impacts of plant invasion focuses on native plant performance, community structure, and ecosystem functioning. Some non-native species can also pose a risk to human health. One such risk is the allergenic nature of the pollen of some introduced plants. We examined whether patterns of airborne pollen differed between non-native and native taxa by summarizing data from seven Spanish Mediterranean localities monitored over 13 yr. The pollen spectra contained 27 native pollen taxa and 18 non-native taxa. Even though pollen from native taxa were more diverse and were present longer in the atmosphere than the non-native, in some years neither the prevalence of the two nor their weekly maximum pollen values differed significantly. However, maximum values for non-native taxa were found earlier in the season than for native pollen. A small percentage of non-native pollen includes pollen from introduced taxa that have not invaded natural habitats (e.g., ornamental plants). Non-native pollen has a larger proportion of allergenic pollen than native pollen. Therefore, the results reveal that the presence of non-native airborne pollen from naturalized and non-naturalized plant species increases the total amount of airborne allergenic pollen grains and the period of allergenic susceptibility.  相似文献   

7.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

8.
《新西兰生态学杂志》2011,29(1):129-135
This study examined whether the diversity and relative abundance of ground-dwelling invertebrates changed in relation to type of vegetation cover. Invertebrate taxon diversity and relative abundance were assessed with pitfall traps placed under the native shrubs Olearia bullata and Coprosma propinqua, and in surrounding patches of exotic pasture. A total of 1935 invertebrates and at least 152 invertebrate taxa were recorded from 49 pitfall traps. The number of native taxa was c.63% of all taxa recorded, whereas exotic invertebrates represented only c.9%. The other c.28% were of undetermined origin. Taxon richness and relative abundance under the two shrub species were statistically similar, although all mean values (except for Coleoptera) were higher for traps set beneath C. propinqua. In contrast, taxon richness and relative abundance were significantly higher in the exotic pasture than under either of the shrub species. The same pattern was evident for exotic invertebrates and the relative abundance of native invertebrates, and for some of the most speciose orders. The data indicate that nearly half of native taxa occurred only under native shrubs. In contrast, 7 out of 12 exotic species were found in all three vegetation types, and all but one of them were recorded at least in exotic pasture. We conclude that the value of locally-modified and patchy vegetation cannot be underestimated for its potential in providing native biodiversity reservoirs for New Zealand’s native invertebrate fauna.  相似文献   

9.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

10.
Despite the global importance of New Zealands invertebrates, relatively little is known about them and their relationships with plants and plant communities in native habitats. Invertebrate diversity was examined by beating randomly chosen shrubs of the species Olearia bullata (Asteraceae) and Coprosma propinqua(Rubiaceae). Invertebrate taxon richness was assessed initially using morphospecies, which were identified subsequently by expert taxonomists. Though the taxon richness of invertebrates recorded from O. bullata was not significantly higher than that on C. propinqua (except for the orders Diptera and Hemiptera), there was a clear indication that O. bullata hosts a higher diversity of invertebrates. Mean number of taxa per shrub for O. bullata was higher in all cases (except Coleoptera), and so was the maximum number of taxa per shrub. Overall, O. bullata yielded 115 invertebrate taxa compared with 93 for C. propinqua. Moreover, 50 invertebrate taxa were restricted to O. bullata compared with 28 for C. propinqua. Since at least ten species of Oleariaare threatened or uncommon, this could be cause for concern with respect to the maintenance of invertebrate diversity. Therefore, sites where Oleariaspecies are still present are likely to be of significance for invertebrate conservation.  相似文献   

11.
Smith  H.  Wood  P.J. 《Hydrobiologia》2002,487(1):45-58
Limestone (karst) springs within the River Wye catchment (Derbyshire, U.K.) were investigated to examine the influence of physical and chemical characteristics and habitat variability on macroinvertebrate community composition. Flow permanence had a greater influence on the invertebrate community than any other physical or chemical variable examined. Clear differences in the macroinvertebrate community were observed between perennial (7) and intermittent springs (11) and the mainstem river. Springs support distinct communities, with some taxa exclusively recorded at the source or within the springbrook (e.g. Agabus guttatus [Paykull] and Micropterna lateralis [Stephens]). A degree of faunal overlap with the mainstem river occurred suggesting that perennial springs may form a refugium for many taxa and that intermittent springs are rapidly colonised by taxa from the mainstem river after the resumption of flow.  相似文献   

12.
Invasion by exotic trees into riparian areas has the potential to impact aquatic systems. We examined the effects of the exotic Salix fragilis (crack willow) on the structure and functioning of small streams in northern Patagonian Andes via a field survey of benthic invertebrates and leaf litter and an in situ experiment. We compared leaf decomposition of the native Ochetophila trinervis (chacay) and S. fragilis in reaches dominated by native vegetation versus reaches dominated by crack willow. We hypothesized that S. fragilis affects the quality of leaf litter entering the streams, changing the aquatic biota composition and litter decomposition. Our study showed that crack willow leaves decomposed slower than chacay, likely related to leaf properties (i.e., leaf toughness). Benthic leaf litter mass was similar between the two riparian vegetation types, though in stream reaches dominated by crack willow, leaves of this species represented 82% of the total leaf litter. Benthic invertebrate abundance and diversity were similar between reaches but species composition differed. Our study found little evidence for strong impacts of crack willow on those small streams. Further studies on other aspects of ecosystem functioning, such as primary production, would enhance our understanding of the impacts of crack willow on Patagonian streams.  相似文献   

13.
1. Blooms of the benthic, stalked diatom Didymosphenia geminata were first observed in New Zealand in 2004. Since then, D. geminata has spread to numerous catchments in the South Island and is also spreading in its native range. The species is a rare example of an invasive alga in lotic systems.
2. Ecosystem effects may be expected as D. geminata attains unusually high biomass in rivers. We examined data from three independent studies in three South Island, New Zealand, rivers for evidence of effects on periphyton biomass and benthic invertebrate communities.
3. The combined results confirmed that the presence of D. geminata was associated with greatly increased periphyton biomass and, in most cases, increased invertebrate densities. We also recorded shifts in community composition, dominated by increased densities of Oligochaeta. Chironomidae, Cladocera and Nematoda also generally increased in density with D. geminata . Significant increases or declines in other invertebrate taxa were inconsistent among rivers.
4. In all three studies, increased spatial invertebrate community homogeneity was associated with high D. geminata biomass at the within-river scale. However, no declines in taxon richness or diversity were detected.
5. Although ecosystem effects of D. geminata on existing periphyton biomass and invertebrate communities are measurable, no inferences can be made from the present data about effects on higher trophic levels (fish).  相似文献   

14.
Biotic homogenization is occurring in many biota as widespread introduced species are replacing unique native species. Although efforts to document homogenization have increased, no studies have explicitly compared the homogenizing effects of species introduced from distant areas to the homogenizing effects of species introduced from more proximate areas. The author analysed three data sets, at different scales and in different taxa, that distinguish species introduced from distant sources (e.g. outside the US) from species introduced from less distant sources (e.g. within the United States). These data include: plant introductions among eight major US cities and fish introductions among 12 US states and among 10 watersheds from New York state. The authors found that, for all data sets, species introduced from less distant sources (within the US) have a greater homogenizing effect on community composition than species from more distant sources (outside the US). In agreement with other studies, the author also find that, in terms of absolute numbers, introductions from nearby sources are far more frequent than introduction of species from distant sources. While tentative, these findings point out the importance of considering species introduced from nearby areas (e.g., extralimital native species) when discussing biotic homogenization from human activities.  相似文献   

15.
The aquatic macrophytes Ranunculus aquatilis and Rorippa nasturtium-aquaticum were transplanted into substrate trays and placed in a stream alongside unvegetated substrate. Macrophytes were observed to have significant effects on 1) invertebrate community structure, 2) guild structure, and 3) microdistribution. 1) Significantly higher taxa richness and community abundances were associated with macrophytes. 2) Significantly higher abundances of shredder, scraper, and predator guilds were associated with macrophytes in fall, and all guilds had higher abundances in macrophytes in spring. However, guild frequency distributions did not differ among habitats except in spring. 3) Enallagma, Gammarus, Gyraulus, Physa, and Pisidium exhibited a strong association with macrophytes, while Hydropsyche, Simulium, Baetis tricaudatus, Glossosoma velona, and Helicopsyche borealis appeared to avoid them. A strong correlation appeared to exist between current velocity preferences of these taxa and their selection or avoidance of vegetated habitat. Thus, the effect of macrophytes in reducing current velocities appeared to be the most important influence on invertebrate microdistribution. However, macrophytes also increase physical heterogeneity and their large surface areas benefit invertebrate community abundances by creating additional living spaces in the water column where none exist above unvegetated substrate.  相似文献   

16.
Laboratory microcosms were used to assess whether tadpole shrimp, Triops sp., affect community structure of other native macroinvertebrates in playa lakes of the Southern High Plains of Texas. Removal of tadpole shrimp shortly after hatching reduced abundances of many taxa, and decreased subsequent taxonomic richness and diversity. For many invertebrates, the presence of tadpole shrimp in low numbers had a positive effect on mean abundance. Direct effects of tadpole shrimp include the reduction of prey species abundance, which in turn may alter biotic interactions among other taxa. Indirect effects include physical modification of the environment during foraging through surface sediments. Results suggest that tadpole shrimp may be a key species controlling structure of macroinvertebrate communities in playa lakes.  相似文献   

17.
Questions: Plant invasions are considered one of the top threats to the biodiversity of native taxa, but clearly documenting the causal links between invasions and the decline of native species remains a major challenge of invasion biology. Most studies have focused on impacts of invaders' living biomass, rather than on mechanisms mediated by litter. However, invasive plant litter, which is often of a very different type and quantity than a system's native plant litter, can have multiple important effects on ecosystem processes – such as nitrogen cycling and soil microclimate – that may influence native plants. Location: We studied effects of litter of invasive grass species that are widespread throughout western North America on native shrubs in southern California's semi‐arid habitat of coastal sage scrub. Methods: We combined a 3‐year field manipulation of non‐native litter with structural equation modeling to understand interacting effects on non‐native grasses, native shrubs, soil nitrogen (available and total), and soil moisture. Results: Litter addition facilitated non‐native grass growth, revealing a positive feedback likely to enhance invasion success. Contrary to a major paradigm of invasion biology – that competition with invasive plant species causes declines of native plants – we found that litter also facilitated growth of the native dominant shrub, a result supported by observational trends. Structural equation models indicated that enhanced soil moisture mediated the positive effects of litter on shrub growth. Conclusions: We demonstrate that invasive plants, via their litter, can facilitate dominant native plants by altering soil moisture. Our results highlight that understanding the impacts and mechanisms of plant invasions may be enhanced by considering the role of invasive plant litter on native plants and ecosystem properties.  相似文献   

18.
H. Smith  P.J. Wood  J. Gunn 《Hydrobiologia》2003,510(1-3):53-66
The macroinvertebrate fauna of five karst (limestone) springbrook systems with contrasting physical habitat and discharge patterns were investigated to examine the role of flow permanence and habitat structure on macroinvertebrate community composition. Clear physical differences were identified between perennial and intermittent springs and individual sampling stations. However, flow permanence, water temperature and the input of leaf litter exerted a greater influence on the aquatic invertebrate community than habitat structure. Perennial sites were characterised by a greater abundance of macroinvertebrates and greater Ephemeroptera, Plecoptera and Trichoptera (EPT) richness than intermittent sites. The fauna of all of the springbrook systems examined were dominated by relatively common and ubiquitous taxa (e.g. Gammarus pulex) although a number of taxa displaying life cycle adaptations to ephemeral aquatic habitats (e.g. Limnephilus auricula and Stenophylax permistus) were recorded at intermittent sites.  相似文献   

19.
Invasive bush honeysuckles, Lonicera spp., are widely viewed as undesirable; however, the effects of Lonicera spp. on native fauna are largely unknown. We investigated how breeding and overwintering bird communities respond to the presence of Lonicera spp. by comparing communities in forested areas with Lonicera spp. to those with a native shrub understory. The dense understory created by Lonicera spp. was associated with a change in the breeding bird community. We found large increases in the densities of understory bird species (e.g. northern cardinals) and decreases in select canopy species (e.g. eastern wood-pewees) in Lonicera spp. sites. In winter, we observed greater densities of frugivorous birds (e.g. American robins) likely due to the fruits that remain on Lonicera spp.; however, there was no difference in the community composition between sites with and without Lonicera spp. Given the widespread distribution of Lonicera spp., this invasive species may facilitate the population increase and range expansion of selected bird species. Many bird species appear to utilize Lonicera spp. for nesting and foraging; therefore, its removal should be accompanied by restoring native shrubs that provide needed resources.  相似文献   

20.
Summary Coastal sage scrub is a community found extensively throughout cismontane California south of San Francisco, but has been surprisingly little studied. In the study area, which extends from Santa Barbara to the San Gorgonio Pass, two major floristic groupings can be found. In the basin bounded coastwards by a line drawn along the axis of the Santa Ana Mountains a large number of native and introduced annual herbs and a few shrubs (e.g.Encelia farinosa), rare or absent in the remainder of the study area, characterize one floristic group. In the coastal region the variety of shrub species increases, and the herbs are predominantly native and more restricted in number. Eleven groups defined by physiognomy, structure and species dominance, and arbitrarily called associations, are recognized. These associations can be grouped into four physiognomic-structural types which transgress the boundaries of the floristic groups. The results of this study and the limited previous literature suggest that Californian coastal sage scrub could be divided, mainly on floristic criteria, into Venturan, San Diegan and Riversidian sage.Plant nomenclature follows Munz & Keek (1968).We gratefully acknowledge the financial help provided by the Department of Earth Sciences, University of California, Riverside, and the aid in plant identification provided by Mr. Oscar Clarke, Museum Scientist, Department of Biology, University of California, Riverside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号