首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-20 Hz) frequency bands. The frontopolar region contained the greatest number of "hub nodes" (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD.  相似文献   

2.
Neuroimaging studies have demonstrated that patients with Alzheimer’s disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI) to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI), as well as 16 cognitive normal healthy subjects (CN). The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC) method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of AD<MCI<CN. Increased VMHC was observed in MCI subjects in posterior brain regions with patterns of AD/CN < MCI (sensorimotor cortex) and AD < CN/MCI (occipital gyrus). DTI analysis showed the most significant difference among the three cohorts was the fractional anisotropy in the genu of corpus callosum, which was positively associated with the VMHC of prefrontal and subcortical regions. Across all the three cohorts, the diffusion parameters in the genu of corpus callosum and VMHC in the above brain regions had significant correlation with the cognitive performance. These results demonstrate that there are specific patterns of interhemispheric functional connectivity changes in the AD and MCI, which can be significantly correlated with the integrity changes in the midline white matter structures. These results suggest that VMHC can be used as a biomarker for the degeneration of the interhemispheric connectivity in AD.  相似文献   

3.
Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.  相似文献   

4.

Background

Obesity is not only associated with metabolic abnormalities, but also with cognitive dysfunction and changes in the central nervous system. The present pilot study was carried out to investigate functional connectivity in obese and non-obese adolescents using magnetoencephalography (MEG).

Methodology/Principal Findings

Magnetoencephalographic recordings were performed in 11 obese (mean BMI 38.8±4.6 kg/m2) and 8 lean (mean BMI 21.0±1.5 kg/m2) female adolescents (age 12–19 years) during an eyes-closed resting-state condition. From these recordings, the synchronization likelihood (SL), a common method that estimates both linear and non-linear interdependencies between MEG signals, was calculated within and between brain regions, and within standard frequency bands (delta, theta, alpha1, alpha2, beta and gamma). The obese adolescents had increased synchronization in delta (0.5–4 Hz) and beta (13–30 Hz) frequency bands compared to lean controls (P delta total = 0.001; P beta total = 0.002).

Conclusions/Significance

This study identified increased resting-state functional connectivity in severe obese adolescents. Considering the importance of functional coupling between brain areas for cognitive functioning, the present findings strengthen the hypothesis that obesity may have a major impact on human brain function. The cause of the observed excessive synchronization is unknown, but might be related to disturbed motivational pathways, the recently demonstrated increase in white matter volume in obese subjects or altered metabolic processes like hyperinsulinemia. The question arises whether the changes in brain structure and communication are a dynamic process due to weight gain and whether these effects are reversible or not.  相似文献   

5.
6.
Liang P  Wang Z  Yang Y  Jia X  Li K 《PloS one》2011,6(7):e22153
The known regional abnormality of the dorsolateral prefrontal cortex (DLPFC) and its role in various neural circuits in mild cognitive impairment (MCI) has given prominence to its importance in studies on the disconnection associated with MCI. The purpose of the current study was to examine the DLPFC functional connectivity patterns during rest in MCI patients and the impact of regional grey matter (GM) atrophy on the functional results. Structural and functional MRI data were collected from 14 MCI patients and 14 age, gender-matched healthy controls. We found that both the bilateral DLPFC showed reduced functional connectivity with the inferior parietal lobule (IPL), superior/medial frontal gyrus and sub-cortical regions (e.g., thalamus, putamen) in MCI patients when compared with healthy controls. Moreover, the DLPFC connectivity with the IPL and thalamus significantly correlated with the cognitive performance of patients as measured by mini-mental state examination (MMSE), clock drawing test (CDT), and California verbal learning test (CVLT) scores. When taking GM atrophy as covariates, these results were approximately consistent with those without correction, although there may be a decrease in the statistical power. These results suggest that the DLPFC disconnections may be the substrates of cognitive impairments in MCI patients. In addition, we also found enhanced functional connectivity between the left DLPFC and the right prefrontal cortex in MCI patients. This is consistent with previous findings of MCI-related increased activation during cognitive tasks, and may represent a compensatory mechanism in MCI patients. Together, the present study demonstrated the coexistence of functional disconnection and compensation in MCI patients using DLPFC functional connectivity analysis, and thus might provide insights into biological mechanism of the disease.  相似文献   

7.
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood.  相似文献   

8.
The relation between pathological findings and clinical and cognitive decline in Multiple Sclerosis remains unclear. Here, we tested the hypothesis that altered functional connectivity could provide a missing link between structural findings, such as thalamic atrophy and white matter lesion load, and clinical and cognitive dysfunction. Resting-state magnetoencephalography recordings from 21 MS patients and 17 gender- and age matched controls were projected onto atlas-based regions-of–interest using beamforming. Average functional connectivity was computed for each ROI and literature-based resting-state networks using the phase-lag index. Structural measures of whole brain and thalamic atrophy and lesion load were estimated from MRI scans. Global analyses showed lower functional connectivity in the alpha2 band and higher functional connectivity in the beta band in patients with Multiple Sclerosis. Additionally, alpha2 band functional connectivity was lower for the patients in two resting-state networks, namely the default mode network and the visual network. Higher beta band functional connectivity was found in the default mode network and in the temporo-parietal network. Lower alpha2 band functional connectivity in the visual network was related to lower thalamic volumes. Beta band functional connectivity correlated positively with disability scores, most prominently in the default mode network, and correlated negatively with cognitive performance in this network. These findings illustrate the relationship between thalamic atrophy, altered functional connectivity and clinical and cognitive dysfunction in MS, which could serve as a bridge to understand how neurodegeneration is associated with altered functional connectivity and subsequently clinical and cognitive decline.  相似文献   

9.

Background

EEG studies of working memory (WM) have demonstrated load dependent frequency band modulations. FMRI studies have localized load modulated activity to the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), and posterior parietal cortex (PPC). Recently, an EEG-fMRI study found that low frequency band (theta and alpha) activity negatively correlated with the BOLD signal during the retention phase of a WM task. However, the coupling of higher (beta and gamma) frequencies with the BOLD signal during WM is unknown.

Methodology

In 16 healthy adult subjects, we first investigated EEG-BOLD signal correlations for theta (5–7 Hz), alpha1 (8–10), alpha2 (10–12 Hz), beta1 (13–20), beta2 (20–30 Hz), and gamma (30–40 Hz) during the retention period of a WM task with set size 2 and 5. Secondly, we investigated whether load sensitive brain regions are characterised by effects that relate frequency bands to BOLD signals effects.

Principal Findings

We found negative theta-BOLD signal correlations in the MPFC, PPC, and cingulate cortex (ACC and PCC). For alpha1 positive correlations with the BOLD signal were found in ACC, MPFC, and PCC; negative correlations were observed in DLPFC, PPC, and inferior frontal gyrus (IFG). Negative alpha2-BOLD signal correlations were observed in parieto-occipital regions. Beta1-BOLD signal correlations were positive in ACC and negative in precentral and superior temporal gyrus. Beta2 and gamma showed only positive correlations with BOLD, e.g., in DLPFC, MPFC (gamma) and IFG (beta2/gamma). The load analysis revealed that theta and—with one exception—beta and gamma demonstrated exclusively positive load effects, while alpha1 showed only negative effects.

Conclusions

We conclude that the directions of EEG-BOLD signal correlations vary across brain regions and EEG frequency bands. In addition, some brain regions show both load sensitive BOLD and frequency band effects. Our data indicate that lower as well as higher frequency brain oscillations are linked to neurovascular processes during WM.  相似文献   

10.

Background

Reduced white matter (WM) integrity is a fundamental aspect of pediatric multiple sclerosis (MS), though relations to resting-state functional MRI (fMRI) connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI) measures of WM microstructural integrity to resting-state network (RSN) functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.

Methods

This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13–24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years) and 16 age- and sex-matched healthy controls (HC). All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS). RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.

Results

Lower fractional anisotropy (FA) was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected). Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels). Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02), genu of the corpus callosum (r = -.553, p = .014), and left (r = -.467, p = .044) and right (r = -.615, p = .005) sagittal stratum.

Conclusions

Loss of WM microstructural integrity is associated with increased resting-state functional connectivity in pediatric MS, which may reflect a diffuse and potentially compensatory activation early in MS.  相似文献   

11.
Hars M  Hars M  Stam CJ  Calmels C 《PloS one》2011,6(10):e25903
The aim of this study was to examine brain responses, in particular functional connectivity, to different visual stimuli depicting familiar biological motions. Ten subjects actively observed familiar biological motions embedded in point-light and video displays. Electroencephalograms were recorded from 64 electrodes. Activity was considered in three frequency bands (4-8 Hz, 8-10 Hz, and 10-13 Hz) using a non-linear measure of functional connectivity. In the 4-8 Hz and 8-10 Hz frequency bands, functional connectivity for the SMA was greater during the observation of biological motions presented in a point-light display compared to the observation of motions presented in a video display. The reverse was observed for the 4-8 Hz frequency band for the left temporal area. Explanations related to: (i) the task demands (i.e., attention and mental effort), (ii) the role(s) of theta and alpha oscillations in cognitive processes, and (iii) the function(s) of cortical areas are discussed. It has been suggested that attention was required to process human biological motions under unfamiliar viewing conditions such as point-light display.  相似文献   

12.
Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer’s disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer’s disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.  相似文献   

13.
The present review summarizes some results of a research program oriented to determine the anatomical substrates of interhemispheric communication in humans, as seen in postmortem material. One main finding is a sensible pattern of histological differentiation along the corpus callosum, indicating specific properties of interhemispheric conduction for axonal fibers involved in different brain functions. Callosal regions that connect primary and secondary sensory and motor areas are characterized by a large proportion of fast-conducting, large-diameter fibers, while regions connecting the so-called association areas and prefrontal areas bear a high density of slow-conducting, lightly myelinated and thin fibers. These findings are interpreted in a functional context, suggesting that the fast-conducting fibers connecting sensory and motor areas contribute to fuse the two hemirepresentations in each hemisphere. It has also been determined that an increased callosal area indicates an increased number of callosal fibers, a finding that validates previous morphometric studies done in several laboratories. No sex differences in callosal size, shape, or in callosal fiber composition were found. Finally, an inverse relation was found between the anatomical asymmetries in the size of the Sylvian fissure and the size and number of fibers in specific segments of the corpus callosum. There were sex differences in terms of the particular callosal regions showing a significant correlation with asymmetries, and in terms of the fiber types that were correlated with asymmetries.  相似文献   

14.
Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.  相似文献   

15.
Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus.  相似文献   

16.
We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (~10 Hz), beta (~20 Hz), and theta (~4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ~50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ~18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain.  相似文献   

17.
Low frequency oscillations are essential in cognitive function impairment in schizophrenia. While functional connectivity can reveal the synchronization between distant brain regions, the regional abnormalities in task-independent baseline brain activity are less clear, especially in specific frequency bands. Here, we used a regional homogeneity (ReHo) method combined with resting-state functional magnetic resonance imaging to investigate low frequency spontaneous neural activity in the three different frequency bands (slow-5∶0.01–0.027 Hz; slow-4∶0.027–0.08 Hz; and typical band: 0.01–0.08 Hz) in 69 patients with schizophrenia and 62 healthy controls. Compared with controls, schizophrenia patients exhibited decreased ReHo in the precentral gyrus, middle occipital gyrus, and posterior insula, whereas increased ReHo in the medial prefrontal cortex and anterior insula. Significant differences in ReHo between the two bands were found in fusiform gyrus and superior frontal gyrus (slow-4> slow-5), and in basal ganglia, parahippocampus, and dorsal middle prefrontal gyrus (slow-5> slow-4). Importantly, we identified significant interaction between frequency bands and groups in the inferior occipital gyrus and caudate body. This study demonstrates that ReHo changes in schizophrenia are widespread and frequency dependent.  相似文献   

18.
The shape of the corpus callosum was studied on mediosagittal sections of 50 human brains. The terms "facies corticalis" and "facies profunda" are proposed for the sides of corpus callosum. Each of 50 brains had a different shape of callosal mediosagittal section and any available classification was not possible. In 94% of cases, the contour of callosal cortical surface exhibited a posterior depression and in 46% also an anterior one. Other details of callosal morphology influencing its shape on mediosagittal section (transverse folds, circumscribed depressions) were described. The junction of fornix and corpus callosum in 78% was in 3rd and in 14% in 4th quarter of callosal length. The possible significance of these findings for further studies of human brain morphology is discussed.  相似文献   

19.
Antidromic and monosynaptic unit responses to the stimulation of the corpus callosum and the symmetrical cortical area as well as antidromic responses to pyramidal tract and thalamic nuclei stimulation were recorded in the sensorimotor cortex of unanaesthetized rabbits. Out of 182 callosal neurones 13 exhibited transcallosal monosynaptic responses. 8 out of 56 callosal units responded antidromically to pyramidal tract or thalamic stimulation. Thus callosal neurones may be monosynaptically excited by callosal units via the corpus callosum and by the pyramidal tract units. It was also found that a pyramidal tract neurone may send a collateral through the corpus callosum and at the same time have a transcallosal monosynaptic input. The role of monosynaptic transcallosal excitation of callosal neurones is discussed.  相似文献   

20.
Clinical diagnosis of disorders of consciousness (DOC) caused by brain injury poses great challenges since patients are often behaviorally unresponsive. A promising new approach towards objective DOC diagnosis may be offered by the analysis of ultra-slow (<0.1 Hz) spontaneous brain activity fluctuations measured with functional magnetic resonance imaging (fMRI) during the resting-state. Previous work has shown reduced functional connectivity within the "default network", a subset of regions known to be deactivated during engaging tasks, which correlated with the degree of consciousness impairment. However, it remains unclear whether the breakdown of connectivity is restricted to the "default network", and to what degree changes in functional connectivity can be observed at the single subject level. Here, we analyzed resting-state inter-hemispheric connectivity in three homotopic regions of interest, which could reliably be identified based on distinct anatomical landmarks, and were part of the "Extrinsic" (externally oriented, task positive) network (pre- and postcentral gyrus, and intraparietal sulcus). Resting-state fMRI data were acquired for a group of 11 healthy subjects and 8 DOC patients. At the group level, our results indicate decreased inter-hemispheric functional connectivity in subjects with impaired awareness as compared to subjects with intact awareness. Individual connectivity scores significantly correlated with the degree of consciousness. Furthermore, a single-case statistic indicated a significant deviation from the healthy sample in 5/8 patients. Importantly, of the three patients whose connectivity indices were comparable to the healthy sample, one was diagnosed as locked-in. Taken together, our results further highlight the clinical potential of resting-state connectivity analysis and might guide the way towards a connectivity measure complementing existing DOC diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号