首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   

2.
Colombia, located in the north of the South American subcontinent is a country of great interest for population genetic studies given its high ethnic and cultural diversity represented by the admixed population, 102 indigenous peoples and African descent populations. In this study, an analysis of the genetic structure and ancestry was performed based on 46 ancestry informative INDEL markers (AIM-INDELs) and considering the genealogical and demographic variables of 451 unrelated individuals belonging to nine Native American, two African American, and four multiple ancestry populations. Measures of genetic diversity, ancestry components, and genetic substructure were analyzed to build a population model typical of the northernmost part of the South American continent. The model suggests three types of populations: Native American, African American, and multiple ancestry. The results support hypotheses posed by other authors about issues like the peopling of South America and the existence of two types of Native American ancestry. This last finding could be crucial for future research on the peopling of Colombia and South America in that a single origin of all indigenous communities should not be assumed. It then would be necessary to consider other events that could explain their genetic variability and complexity throughout the continent.  相似文献   

3.
The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.  相似文献   

4.
A genomewide admixture map for Latino populations   总被引:5,自引:1,他引:4       下载免费PDF全文
Admixture mapping is an economical and powerful approach for localizing disease genes in populations of recently mixed ancestry and has proven successful in African Americans. The method holds equal promise for Latinos, who typically inherit a mix of European, Native American, and African ancestry. However, admixture mapping in Latinos has not been practical because of the lack of a map of ancestry-informative markers validated in Native American and other populations. To address this, we screened multiple databases, containing millions of markers, to identify 4,186 markers that were putatively informative for determining the ancestry of chromosomal segments in Latino populations. We experimentally validated each of these markers in at least 232 new Latino, European, Native American, and African samples, and we selected a subset of 1,649 markers to form an admixture map. An advantage of our strategy is that we focused our map on markers distinguishing Native American from other ancestries and restricted it to markers with very similar frequencies in Europeans and Africans, which decreased the number of markers needed and minimized the possibility of false disease associations. We evaluated the effectiveness of our map for localizing disease genes in four Latino populations from both North and South America.  相似文献   

5.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

6.

Background

Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.

Principal Findings

We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of ∼12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9–10% mtDNAs and ∼31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.

Conclusions

We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.  相似文献   

7.
African descended populations exhibit an increased prevalence of asthma and allergies compared to Europeans. One approach to distinguish between environmental and genetic explanations for this difference is to study relationships of asthma risk to individual admixture. We aimed to determine the admixture proportions of a case-control sample from the Caribbean Coast of Colombia currently participating in genetic studies for asthma, and to test for population stratification and association between African ancestry and asthma and total serum IgE levels (tIgE). We genotyped 368 asthmatics and 365 non-asthmatics for 52 autosomal ancestry informative markers, six mtDNA haplogroups and nine haplogroups and five microsatellites in Y chromosome. Autosomal admixture proportions, population stratification, and associations between ancestry and the phenotypes were estimated by ADMIXMAP. The average admixture proportions among asthmatics were 42.8% European, 39.9% African and 17.2% Native American and among non-asthmatics they were 44.2% (P = 0.068), 37.6% (P = 0.007) and 18.1% (P = 0.050), respectively. In the total sample, the paternal contributions were 71% European, 25% African and 4.0% Native American and the maternal lineages were 56.8% Native American, and 20.2% African; 22.9% of the individuals carried other non-Native American mtDNA haplogroups. African ancestry was significantly associated with asthma (OR: 2.97; 95% CI: 1.08–8.08), high tIgE (OR: 1.9; 95% CI: 1.17–3.12) and socioeconomic status (OR = 0.64; 95% CI: 0.47–0.87). Significant population stratification was observed in this sample. Our findings indicate that genetic factors can explain the association between asthma and African ancestry and suggest that this sample is a useful resource for performing admixture mapping for asthma.  相似文献   

8.

Background

Self-rated health (SRH) has strong predictive value for mortality in different contexts and cultures, but there is inconsistent evidence on ethnoracial disparities in SRH in Latin America, possibly due to the complexity surrounding ethnoracial self-classification.

Materials/Methods

We used 370,539 Single Nucleotide Polymorphisms (SNPs) to examine the association between individual genomic proportions of African, European and Native American ancestry, and ethnoracial self-classification, with baseline and 10-year SRH trajectories in 1,311 community dwelling older Brazilians. We also examined whether genomic ancestry and ethnoracial self-classification affect the predictive value of SRH for subsequent mortality.

Results

European ancestry predominated among participants, followed by African and Native American (median = 84.0%, 9.6% and 5.3%, respectively); the prevalence of Non-White (Mixed and Black) was 39.8%. Persons at higher levels of African and Native American genomic ancestry, and those self-identified as Non-White, were more likely to report poor health than other groups, even after controlling for socioeconomic conditions and an array of self-reported and objective physical health measures. Increased risks for mortality associated with worse SRH trajectories were strong and remarkably similar (hazard ratio ~3) across all genomic ancestry and ethno-racial groups.

Conclusions

Our results demonstrated for the first time that higher levels of African and Native American genomic ancestry—and the inverse for European ancestry—were strongly correlated with worse SRH in a Latin American admixed population. Both genomic ancestry and ethnoracial self-classification did not modify the strong association between baseline SRH or SRH trajectory, and subsequent mortality.  相似文献   

9.
The "thrifty genotype" hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ~95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05).  相似文献   

10.
It is well-known that population substructure may lead to confounding in case–control association studies. Here, we examined genetic structure in a large racially and ethnically diverse sample consisting of five ethnic groups of the Multiethnic Cohort study (African Americans, Japanese Americans, Latinos, European Americans and Native Hawaiians) using 2,509 SNPs distributed across the genome. Principal component analysis on 6,213 study participants, 18 Native Americans and 11 HapMap III populations revealed four important principal components (PCs): the first two separated Asians, Europeans and Africans, and the third and fourth corresponded to Native American and Native Hawaiian (Polynesian) ancestry, respectively. Individual ethnic composition derived from self-reported parental information matched well to genetic ancestry for Japanese and European Americans. STRUCTURE-estimated individual ancestral proportions for African Americans and Latinos are consistent with previous reports. We quantified the East Asian (mean 27%), European (mean 27%) and Polynesian (mean 46%) ancestral proportions for the first time, to our knowledge, for Native Hawaiians. Simulations based on realistic settings of case–control studies nested in the Multiethnic Cohort found that the effect of population stratification was modest and readily corrected by adjusting for race/ethnicity or by adjusting for top PCs derived from all SNPs or from ancestry informative markers; the power of these approaches was similar when averaged across causal variants simulated based on allele frequencies of the 2,509 genotyped markers. The bias may be large in case-only analysis of gene by gene interactions but it can be corrected by top PCs derived from all SNPs.  相似文献   

11.
Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is <5% and African ancestry is barely detectable in the studied population. The largest genetic distances were between African versus Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size.  相似文献   

12.
CYP3A4-V, an A to G promoter variant associated with prostate cancer in African Americans, exhibits large differences in allele frequency between populations. Given that the African American population is genetically heterogeneous because of its African ancestry and subsequent admixture with European Americans, case-control studies with African Americans are highly susceptible to spurious associations. To test for association with prostate cancer, we genotyped CYP3A4-V in 1376 (2 N) chromosomes from prostate cancer patients and age- and ethnicity-matched controls representing African Americans, Nigerians, and European Americans. To detect population stratification among the African American samples, 10 unlinked genetic markers were genotyped. To correct for the stratification, the uncorrected association statistic was divided by the average of association statistics across the 10 unlinked markers. Sharp differences in CYP3A4-V frequencies were observed between Nigerian and European American controls (0.87 and 0.10, respectively; P<0.0001). African Americans were intermediate (0.66). An association uncorrected for stratification was observed between CYP3A4-V and prostate cancer in African Americans (P=0.007). A nominal association was also observed among European Americans (P=0.02) but not Nigerians. In addition, the unlinked genetic marker test provided strong evidence of population stratification among African Americans. Because of the high level of stratification, the corrected P-value was not significant (P=0.25). Follow-up studies on a larger dataset will be needed to confirm whether the association is indeed spurious; however, these results reveal the potential for confounding of association studies by using African Americans and the need for study designs that take into account substructure caused by differences in ancestral proportions between cases and controls.  相似文献   

13.
Higher body mass index (BMI) is a well-established risk factor for type 2 diabetes, and rates of obesity and type 2 diabetes are substantially higher among Mexican-Americans relative to non-Hispanic European Americans. Mexican-Americans are genetically diverse, with a highly variable distribution of Native American, European, and African ancestries. Here, we evaluate the role of Native American ancestry on BMI and diabetes risk in a well-defined Mexican-American population. Participants were randomly selected among individuals residing in the Houston area who are enrolled in the Mexican-American Cohort study. Using a custom Illumina GoldenGate Panel, we genotyped DNA from 4,662 cohort participants for 87 Ancestry-Informative Markers. On average, the participants were of 50.2% Native American ancestry, 42.7% European ancestry and 7.1% African ancestry. Using multivariate linear regression, we found BMI and Native American ancestry were inversely correlated; individuals with <20% Native American ancestry were 2.5 times more likely to be severely obese compared to those with >80% Native American ancestry. Furthermore, we demonstrated an interaction between BMI and Native American ancestry in diabetes risk among women; Native American ancestry was a strong risk factor for diabetes only among overweight and obese women (OR = 1.190 for each 10% increase in Native American ancestry). This study offers new insight into the complex relationship between obesity, genetic ancestry, and their respective effects on diabetes risk. Findings from this study may improve the diabetes risk prediction among Mexican-American individuals thereby facilitating targeted prevention strategies.  相似文献   

14.
BACKGROUND/AIMS: The Tobago Afro-Caribbean population is a valuable resource for studying the genetics of diseases that show significant differences in prevalence between populations of African descent and populations of other ancestries. Empirical confirmation of low European and Native American admixture may help in clarifying the ethnic variation in risk for such diseases. We hypothesize that the degree of European and Native American admixture in the Tobago population is low. METHODS: Admixture was estimated in a random sample of 220 men, from a population-based prostate cancer screening survey of 3,082 Tobago males, aged 40 to 79 years. We used a set of six autosomal markers with large allele frequency differences between the major ethnic populations involved in the admixture process, Europeans, Native Americans and West Africans. RESULTS: The ancestral proportions of Tobago population are estimated as 94.0+/-1.2% African, 4.6+/-3.4% European and 1.4+/-3.6% Native American. CONCLUSIONS: We conclude that Tobago Afro-Caribbean men are predominantly of West African ancestry, with minimal European and Native American admixture. The Tobago population, thus, may carry a higher burden of high-risk alleles of African origin for certain diseases than the more admixed African-American population. Conversely, this population may benefit from a higher prevalence of protective alleles of African origin.  相似文献   

15.
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.  相似文献   

16.
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.  相似文献   

17.
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago.  相似文献   

18.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.  相似文献   

19.
Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2 > 0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.  相似文献   

20.
The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral contributions. The aim of this work was to examine 11 urban admixed populations and a Native American group, called Pastos, for 32 X chromosome indel markers to expand the current knowledge concerning the genetic background of Colombia. The results revealed a highly diverse genetic background comprising all admixed populations, harbouring important X chromosome contributions from all continental source populations. In addition, Colombia is genetically sub-structured, with different proportions of European and African influxes depending on the regions. The samples from the North Pacific and Caribbean coasts have a high African ancestry, showing the highest levels of diversity. The sample from the South Andean region showed the lowest diversity and significantly higher proportion of Native American ancestry than the other samples from the North Pacific and Caribbean coasts, Central-West and Central-East Andean regions, and the Orinoquian region. The results of admixture analysis using X-chromosomal markers suggest that the high proportion of African ancestry in the North Pacific coast was primarily male driven. These men have joined to females with higher Native American and European ancestry (likely resulting from a classic colonial asymmetric mating type: European male x Amerindian female). This high proportion of male-mediated African contributions is atypical of colonial settings, suggesting that the admixture occurred during a period when African people were no longer enslaved. In the remaining regions, the African contribution was primarily female-mediated, whereas the European counterpart was primarily male driven and the Native American ancestry contribution was not gender biased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号