首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A large number of biclustering methods have been proposed to detect patterns in gene expression data. All these methods try to find some type of biclusters but no one can discover all the types of patterns in the data. Furthermore, researchers have to design new algorithms in order to find new types of biclusters/patterns that interest biologists. In this paper, we propose a novel approach for biclustering that, in general, can be used to discover all computable patterns in gene expression data. The method is based on the theory of Kolmogorov complexity. More precisely, we use Kolmogorov complexity to measure the randomness of submatrices as the merit of biclusters because randomness naturally consists in a lack of regularity, which is a common property of all types of patterns. On the basis of algorithmic probability measure, we develop a Markov Chain Monte Carlo algorithm to search for biclusters. Our method can also be easily extended to solve the problems of conventional clustering and checkerboard type biclustering. The preliminary experiments on simulated as well as real data show that our approach is very versatile and promising.  相似文献   

3.
4.
5.
6.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request.  相似文献   

7.
MOTIVATION: In recent years, there have been various efforts to overcome the limitations of standard clustering approaches for the analysis of gene expression data by grouping genes and samples simultaneously. The underlying concept, which is often referred to as biclustering, allows to identify sets of genes sharing compatible expression patterns across subsets of samples, and its usefulness has been demonstrated for different organisms and datasets. Several biclustering methods have been proposed in the literature; however, it is not clear how the different techniques compare with each other with respect to the biological relevance of the clusters as well as with other characteristics such as robustness and sensitivity to noise. Accordingly, no guidelines concerning the choice of the biclustering method are currently available. RESULTS: First, this paper provides a methodology for comparing and validating biclustering methods that includes a simple binary reference model. Although this model captures the essential features of most biclustering approaches, it is still simple enough to exactly determine all optimal groupings; to this end, we propose a fast divide-and-conquer algorithm (Bimax). Second, we evaluate the performance of five salient biclustering algorithms together with the reference model and a hierarchical clustering method on various synthetic and real datasets for Saccharomyces cerevisiae and Arabidopsis thaliana. The comparison reveals that (1) biclustering in general has advantages over a conventional hierarchical clustering approach, (2) there are considerable performance differences between the tested methods and (3) already the simple reference model delivers relevant patterns within all considered settings.  相似文献   

8.

Background  

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only [1]. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.  相似文献   

9.
Many different methods exist for pattern detection in gene expression data. In contrast to classical methods, biclustering has the ability to cluster a group of genes together with a group of conditions (replicates, set of patients or drug compounds). However, since the problem is NP-complex, most algorithms use heuristic search functions and therefore might converge towards local maxima. By using the results of biclustering on discrete data as a starting point for a local search function on continuous data, our algorithm avoids the problem of heuristic initialization. Similar to OPSM, our algorithm aims to detect biclusters whose rows and columns can be ordered such that row values are growing across the bicluster's columns and vice-versa. Results have been generated on the yeast genome (Saccharomyces cerevisiae), a human cancer dataset and random data. Results on the yeast genome showed that 89% of the one hundred biggest non-overlapping biclusters were enriched with Gene Ontology annotations. A comparison with OPSM and ISA demonstrated a better efficiency when using gene and condition orders. We present results on random and real datasets that show the ability of our algorithm to capture statistically significant and biologically relevant biclusters.  相似文献   

10.
MOTIVATION: Query-based biclustering techniques allow interrogating a gene expression compendium with a given gene or gene list. They do so by searching for genes in the compendium that have a profile close to the average expression profile of the genes in this query-list. As it can often not be guaranteed that the genes in a long query-list will all be mutually coexpressed, it is advisable to use each gene separately as a query. This approach, however, leaves the user with a tedious post-processing of partially redundant biclustering results. The fact that for each query-gene multiple parameter settings need to be tested in order to detect the 'most optimal bicluster size' adds to the redundancy problem. RESULTS: To aid with this post-processing, we developed an ensemble approach to be used in combination with query-based biclustering. The method relies on a specifically designed consensus matrix in which the biclustering outcomes for multiple query-genes and for different possible parameter settings are merged in a statistically robust way. Clustering of this matrix results in distinct, non-redundant consensus biclusters that maximally reflect the information contained within the original query-based biclustering results. The usefulness of the developed approach is illustrated on a biological case study in Escherichia coli. Availability and implementation: Compiled Matlab code is available from http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Information_DeSmet_2011/.  相似文献   

11.
Cheng and Church algorithm is an important approach in biclustering algorithms. In this paper, the process of the extended space in the second stage of Cheng and Church algorithm is improved and the selections of two important parameters are discussed. The results of the improved algorithm used in the gene expression spectrum analysis show that, compared with Cheng and Church algorithm, the quality of clustering results is enhanced obviously, the mining expression models are better, and the data possess a strong consistency with fluctuation on the condition while the computational time does not increase significantly.  相似文献   

12.

Background  

The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters.  相似文献   

13.
14.
15.
16.
17.
18.
Machine learning techniques offer a viable approach to cluster discovery from microarray data, which involves identifying and classifying biologically relevant groups in genes and conditions. It has been recognized that genes (whether or not they belong to the same gene group) may be co-expressed via a variety of pathways. Therefore, they can be adequately described by a diversity of coherence models. In fact, it is known that a gene may participate in multiple pathways that may or may not be co-active under all conditions. It is therefore biologically meaningful to simultaneously divide genes into functional groups and conditions into co-active categories--leading to the so-called biclustering analysis. For this, we have proposed a comprehensive set of coherence models to cope with various plausible regulation processes. Furthermore, a multivariate biclustering analysis based on fusion of different coherence models appears to be promising because the expression level of genes from the same group may follow more than one coherence models. The simulation studies further confirm that the proposed framework enjoys the advantage of high prediction performance.  相似文献   

19.
Gene-Ontology-based clustering of gene expression data   总被引:2,自引:0,他引:2  
The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various levels of the ontology tree. AVAILABILITY: The 32-bit Windows application is freely available at http://www.mpibpc.mpg.de/go-cluster/  相似文献   

20.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号