首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The extensively studied cytokine IL-1β is an important mediator of the inflammatory response. However, dysregulated release of IL-1β can be detrimental and is attributed to the progression and pathogenesis of multiple inflammatory diseases including, rhuematoid arthritis (RA), atherosclerosis, type 2 diabetes (T2D), Alzheimers disease and gout. IL-1β is encoded as a pro-protein. A multi-protein molecular scaffold termed the "Inflammasome" is responsible for the tightly controlled and coordinated processing of pro-IL-1β. The activation of several NLR (nucleotide-binding oligomerization domain (NOD)-like receptor) family members and PYHIN (pyrin and HIN domain) proteins can drive the formation of inflammasomes. However, the exact biochemical mechanisms governing their activation have been the subject of much research. Different inflammasomes have been demonstrated to respond to the same pathogen inducing a cooperative immune response accountable for the clearance of infection. Here, we review current knowledge surrounding the biochemical regulation of the NLRP1, NLRP3, NLRC4, AIM2 and IFI16 inflammasomes.  相似文献   

4.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

5.
6.
7.
8.
Absent in melanoma 2 (AIM2) is a sensor of cytosolic dsDNA and is responsible for the activation of inflammatory and host immune responses to DNA viruses and intracellular bacteria. AIM2 is a member of the hematopoietic interferon-inducible nuclear proteins with a 200 amino-acid repeat (HIN200) family, containing a pyrin domain (PYD) at the N-terminus. Several studies have demonstrated that AIM2 is responsible for host defense against intracellular bacteria such as Francisella tularensis, Listeria monocytogenes and Mycobacerium tuberculosis. However, the role of AIM2 in host defenses against Brucella is poorly understood. In this study, we have shown that AIM2 senses Brucella DNA in dendritic cells to induce pyroptosis and regulates type I IFN. Confocal microscopy of infected cells revealed co-localization between Brucella DNA and endogenous AIM2. Dendritic cells from AIM2 KO mice infected with B. abortus showed impaired secretion of IL-1β as well as compromised caspase-1 cleavage. AIM2 KO mice displayed increased susceptibility to B. abortus infection in comparison to wild-type mice, and this susceptibility was associated with defective IL-1β production together with reduced IFN-γ responses. In summary, the increased bacterial burden observed in vivo in AIM2 KO animals confirmed that AIM2 is essential for an effective innate immune response against Brucella infection.  相似文献   

9.
Absent in melanoma 2 (AIM2) is a cytoplasmic double-stranded DNA sensor involved in innate immunity. It uses its C-terminal HIN domain for recognizing double-stranded DNA and its N-terminal pyrin domain (PYD) for eliciting downstream effects through recruitment and activation of apoptosis-associated Speck-like protein containing CARD (ASC). ASC in turn recruits caspase-1 and/or caspase-11 to form the AIM2 inflammasome. The activated caspases process proinflammatory cytokines IL-1β and IL-18 and induce the inflammatory form of cell death pyroptosis. Here we show that AIM PYD (AIM2PYD) self-oligomerizes. We notice significant sequence homology of AIM2PYD with the hydrophobic patches of death effector domain (DED)-containing proteins and confirm that mutations on these residues disrupt AIM2PYD self-association. The crystal structure at 1.82 Å resolution of such a mutant, F27G of AIM2PYD, shows the canonical six-helix (H1–H6) bundle fold in the death domain superfamily. In contrast to the wild-type AIM2PYD structure crystallized in fusion with the large maltose-binding protein tag, the H2–H3 region of the AIM2PYD F27G is well defined with low B-factors. Structural analysis shows that the conserved hydrophobic patches engage in a type I interaction that has been observed in DED/DED and other death domain superfamily interactions. While previous mutagenesis studies of PYDs point to the involvement of charged interactions, our results reveal the importance of hydrophobic interactions in the same interfaces. These centrally localized hydrophobic residues within fairly charged patches may form the hot spots in AIM2PYD self-association and may represent a common mode of PYD/PYD interactions in general.  相似文献   

10.
A key host response to limit microbial spread is the induction of cell death when foreign nucleic acids are sensed within infected cells. In mouse macrophages, transfected DNA or infection with modified vaccinia virus Ankara (MVA) can trigger cell death via the absent in melanoma 2 (AIM2) inflammasome. In this article, we show that nonmyeloid human cell types lacking a functional AIM2 inflammasome still die in response to cytosolic delivery of different DNAs or infection with MVA. This cell death induced by foreign DNA is independent of caspase-8 and carries features of mitochondrial apoptosis: dependence on BAX, APAF-1, and caspase-9. Although it does not require the IFN pathway known to be triggered by infection with MVA or transfected DNA via polymerase III and retinoid acid-induced gene I-like helicases, it shows a strong dependence on components of the DNA damage signaling pathway: cytosolic delivery of DNA or infection with MVA leads to phosphorylation of p53 (serines 15 and 46) and autophosphorylation of ataxia telangiectasia mutated (ATM); depleting p53 or ATM with small interfering RNA or inhibiting the ATM/ATM-related kinase family by caffeine strongly reduces apoptosis. Taken together, our findings suggest that a pathway activating DNA damage signaling plays an important independent role in detecting intracellular foreign DNA, thereby complementing the induction of IFN and activation of the AIM2 inflammasome.  相似文献   

11.
Hahn Y  Bera TK  Pastan IH  Lee B 《Gene》2006,366(2):238-245
The POTE family genes encode a highly homologous group of primate-specific proteins that contain ankyrin repeats and coiled coil domains. At least 13 paralogous POTE family genes are found on 8 human chromosomes (2, 8, 13, 14, 15, 18, 21 and 22), which can be sorted into 3 groups based on sequence similarity. We identified by a database search a group of additional human ankyrin repeat domain proteins, of which ANKRD26 and ANKRD30A are the best characterized; these are more distant homologs of POTE family proteins. A comprehensive comparison of the genomic organization indicates that ANKRD26 has the genomic structure of the possible ancestor of ANKRD30A and all POTE family genes. Extensive remodeling involving segmental loss and internal duplication appears to have reshaped the ANKRD30A and POTE family genes after the primal duplication of the ancestor gene. We also identified a mouse homolog of human ANKRD26, but failed to find a mouse homolog that bears the structural characteristics of any of the POTE family of proteins. The mouse Ankrd26 may serve as a useful model for the study of the function of human ANKRD26, ANKRD30A and POTE family proteins.  相似文献   

12.
The formation of inflammasome complexes contributes inactivation of inflammatory caspases viz caspase 1, which is generally considered essential for the innate response. Three proteins constituted this inflammasome complex, such as Nod-like receptors (NLRP or AIM2), ASC possessing caspase-recruiting domain, and caspase-1. The ASC proteins comprise two domains, the N-terminal PYD domain responsible for the interaction of various proteins, including PYD only protein 3 (POP3), and the CARD domain for association with other proteins. The PYRIN Domain-Only Protein POP3 negatively regulates responses to DNA virus infection by preventing the ALR inflammasome formation. POP3 directly interacts with ASC, therefore inhibiting ASC recruitment to AIM2-like receptors (ALRs). In the current study, we designed various constructs of the PYRIN Domain-Only Protein 3 (POP3) and ASC PYD domain to find the best-overexpressed construct for biochemical characterization as well as our complex studies. We cloned, purified, and characterized the PYD domain of pyrin only protein 3 and ASC PYD domain under physiological conditions. Our in vitro study clearly shows that the ASC PYD domain of corresponding amino acid 1–96 aa with ease self-oligomerization in physiological buffer conditions, and complex formation of POP3 PYD (1–83 aa) was inhibited by ASC PYD domain. Besides, we purified the PYD of POP3 protein in low and high salt conditions and different pH values for their biochemical characterization. Our results showed that POP3 formed a dimer under normal physiological conditions and was stable under normal buffer conditions; however, the purification in extremely low pH (pH5.0) conditions shows unstable behavior, the high salt conditions (500 mM NaCl) influence the protein aggregation. SDS PAGE arbitrated the homogeneity of the PYD domain of pyrin only protein 3 and ASC PYD domain of corresponding amino acids 1–83 and 1–96, respectively. Furthermore, our native PAGE shows the PYD domain of pyrin; only protein 3 did not form a complex with ASC PYD domain because of oligomerization mediated by the PYD domain.  相似文献   

13.
Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.  相似文献   

14.
The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at ∼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.  相似文献   

15.
Hu S  Wang H  Knisely AA  Reddy S  Kovacevic D  Liu Z  Hoffman SM 《Genetica》2008,133(2):215-226
The evolution of gene families can be best understood by studying the modern organization and functions of family members, and by comparing parallel families in different species. In this study, the CYP2ABFGST gene cluster has been characterized in rat and compared to the syntenic clusters in mouse and human, providing an interesting example of gene family evolution. In the rat, 18 loci from six subfamilies have been identified by specifically amplifying and sequencing gene fragments from cloned DNA, and have been exactly placed on chromosome 1. The overall organization of the gene cluster in rat is relatively simple, with genes from each subfamily in tandem, and is more similar to the mouse than to the human cluster. We have reconstructed the probable structure of the CYP2ABFGST cluster in the common ancestor of primates and rodents, and inferred a model of the evolution of this gene cluster in the three species. Numerous nontandem and block duplications, inversions, and translocations have occurred entirely inside the cluster, indicating that pairing between duplicate genes is keeping the rearrangements within the cluster region. The initial tandem duplication of a CYP2 gene in an early mammalian ancestor has made this region particularly subject to such localized rearrangements. Even if duplicated genes do not have a large-scale effect on chromosomal rearrangements, on a local level clustered gene families may have contributed significantly to the genomic complexity of modern mammals.  相似文献   

16.
By using in silico methods in a previous study, we identified 100 oocyte-specific genes and 150 genes, enriched in the mouse oocyte. Interestingly, approximately half of the oocyte-specific genes tend to cluster on mouse chromosomes as if they have recently duplicated during evolution. In this study, we focused our attention on mouse BRDT, which belongs to a family of four structurally related proteins characterized by two N-terminal bromodomains and one C-terminal extraterminal domain (ET domain), defining the BET family. In mammals, BRD2, -3, and -4 are ubiquitously expressed, whereas BRDT expression was shown to be restricted to the testis. We were interested to know whether there was a correlation between the evolutionary rate and the specificity of expression of these four paralogous genes. First, we show by RT-PCR and in situ hybridization that BRDT is also expressed in mouse oocyte. Moreover, phylogenetic analyses show that the BRDT germ cell-specific orthology group clearly evolves faster than its ubiquitously expressed paralogs BRD2, BRD3, and BRD4. This suggests that there is a relationship between the evolution of these four groups of orthology and their tissue specificity of expression.  相似文献   

17.
Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis.  相似文献   

18.
The activation of NLR family pyrin domain containing 3(NLRP3)inflammasome can be induced by a wide spectrum of activators.This is unlikely achieved by the binding of different activators directly to the NLRP3 protein itself,as the activators found so far show different forms of chemical structures.Previous studies have shown that these activators can induce potassium ion(K+)and chloride ion(Cl?)efflux,calcium(Ca2+)and other ion mobilization,mitochondrial dysfunction,and lysosomal disruption,all of which are believed to cause NLRP3 inflammasome activation;how these events are induced by the activators and how they coordinate with each other in inducing the NLRP3 inflammasome activation are not fully understood.Increasing evidence suggests that the coordinated change of intracellular ion concentrations may be a common mechanism for the NLRP3 activation by different activators.In this mini-review,we present a brief summary of the current knowledge about how different ionic flows(including K+,sodium ion,Ca2+,magnesium ion,manganese ion,zinc ion,iron ion,and Cl?)are involved in regulating the NLRP3 inflammasome activation in macrophages.  相似文献   

19.
The inflammasome is a multiprotein signaling complex that mediates inflammatory innate immune responses through caspase 1 activation and subsequent IL‐1β secretion. However, because its aberrant activation often leads to inflammatory diseases, targeting the inflammasome holds promise for the treatment of inflammation‐related diseases. In this study, it was found that a hot‐water extract of Sanguisorba officinalis (HSO) suppresses inflammasome activation triggered by adenosine 5′‐triphosphate, nigericin, microbial pathogens, and double stranded DNA in bone marrow‐derived macrophages. HSO was found to significantly suppress IL‐1β production in a dose‐dependent manner; this effect correlated well with small amounts of caspase 1 and little ASC pyroptosome formation in HSO‐treated cells. The anti‐inflammatory activity of HSO was further confirmed in a mouse model of endotoxin‐induced septic shock. Oral administration of HSO reduced IL‐1β titers in the serum and peritoneal cavity, increasing the survival rate. Taken together, our results suggest that HSO is an inhibits inflammasome activation through nucleotide‐binding domain and leucine‐rich repeat pyrin domain 3, nucleotide‐binding domain and leucine‐rich repeat caspase recruitment domain 4 and absent in melanoma 2 pathways, and may be useful for treatment of inflammasome‐mediated diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号