首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated patterns of spore dispersal in the giant kelp Macrocystis pyrifera by collecting 80 independent measurements of spore dispersal from isolated individuals and isolated groups of individuals over a two‐year period. Our results indicate that giant kelp spores routinely disperse both short (i.e. a couple meters) and long (i.e. hundreds to thousands of meters) distances depending on the oceanographic conditions. One consequence of spore dispersal over short distances is self‐fertilization (i.e., fertilization between male and female gametophytes derived from the same sporophyte). Field experiments designed to test the effects of self‐fertilization on lifetime fitness in Macrocystis revealed significant inbreeding depression. Birth rates in self‐fertilized populations were ca. 50% of those produced from outcrossing, which lead to significant differences in cohort size that persisted up through the adult stage. In contrast to outcrossed populations, very few individuals produced from selfing became reproductively mature, and those that did were significantly less fecund than outcrossed individuals. By contrast, long‐range dispersal of spores leads to increased rates of outcrossing. However, long‐range dispersal is typically accompanied by massive dilution of spores, leading to low densities of spore settlement. Sparse spore settlement decreases the overall chance of fertilization in the microscopic gametophyte generation thereby reducing the potential for colonization of the macroscopic sporophyte stage. Large population size of adult sporophytes coupled with the synchronous release of spores in response to environmental cues can help offset the effects of spore dilution and extend the distances over which giant kelp is able to colonize.  相似文献   

2.
We used species‐specific spore traps to measure airborne dispersal of the wood decay fungus Phlebia centrifuga (spore size 6.5–9 × 2.5–3 μm) up to 1000 m distance from a point source. We fitted two simple dispersal models, an empirical power law model and a semi‐mechanistic diffusion model to the data using the Bayesian approach. The diffusion model provided a better fit than the power law model which underestimated deposition at 3–55 m and overestimated deposition at longer and shorter distances. Model fit improved by allowing overdispersion, suggesting that spores are not dispersed independently but wind can transport spores in groups inside discrete air packages up to considerable distances. Using the fitted diffusion model and available information on the establishment rates of wood‐decay fungi, we examine the distance up to which colonisation from a single fruit body is likely to occur. We conclude that the diluting effect of distance and low establishment success make the occurrence of P. centrifuga dispersal limited possibly already at the distance of tens of metres and very probably at a few hundred metres from the nearest fruit body, despite the fact that under favourable conditions a high proportion of the spores can disperse considerably further. This conclusion is likely to hold generally for those fungal species that inhabit fragmented landscapes, have specialised resource and habitat requirements, and have similar spore size and other dispersal traits as P. centrifuga.  相似文献   

3.
Wind is the main dispersal agent for a wide array of species and for these species the environmental conditions under which diaspores are released can potentially modify the dispersal kernel substantially. Little is known about how bryophytes regulate spore release, but conditions affecting peristome movements and vibration of the seta may be important. We modelled airborne spore dispersal of the bryophyte species Discelium nudum (spore diameter 25 μm), in four different release scenarios, using a Lagrangian stochastic dispersion model and meteorological data. We tested the model predictions against experimental data on colonization success at five distances (5, 10, 30, 50 and 100 m) and eight directions from a translocated point source during seven two‐day periods. The model predictions were generally successful in describing the observed colonization patterns, especially beyond 10 m. In the laboratory we established spore release thresholds; horizontal wind speed sd > 0.25 m s?1 induced the seta to vibrate and in relative humidity < 75% the peristome was open. Our dispersal model predicts that the proportion of spores dispersing beyond 100 m is almost twice as large if the spores are released under turbulent conditions than under more stable conditions. However, including release thresholds improved the fit of the model to the colonization data only minimally, with roughly the same amount of variation explained by the most constrained scenario (assuming both vibration of the seta and an open peristome) and the scenario assuming random release. Model predictions under realised experimental conditions suggest that we had a low statistical power to rank the release scenarios due to the lack of measurements of the absolute rate of spore release. Our results hint at the importance of release conditions, but also highlight the challenges in dispersal experiments intended for validating mechanistic dispersal models.  相似文献   

4.
Scale-dependence and mechanisms of dispersal in freshwater zooplankton   总被引:6,自引:0,他引:6  
Communities of organisms form as a result of both interspecific and abiotic interactions within local habitat patches and dispersal among patches in a region. Local processes are expected to play a dominant role when dispersal occurs much more often than extinction. We performed two field experiments to examine rates and mechanisms of dispersal in freshwater pond zooplankton communities. First, we tested the effect of distance from a source on the rate of colonization of artificial habitat by placing wading pools at 5, 10, 30 and 60 m from two natural fishless ponds and observing the succession of zooplankton. Seventy-eight percent of the species in the source ponds that were capable of living in the pools colonized at least once during the experiment. A new species was found in the pools on average once every four days, suggesting that colonization events occur on the order of days to weeks for many species. Colonization rates declined further from the source at one pond but not the other, and the effect of distance was relatively weak at both ponds. This suggests that many species disperse broadly over short distances. The second experiment tested the role of animal vectors for zooplankton dispersal by restricting access to the pools. Eight treatments were imposed that excluded potential animal vectors along a body size gradient from large mammals to small insects. While the treatments affected zooplankton colonization, many species invaded even when all animals larger than 1 mm were excluded. Animal vectors may therefore be less important for dispersal than wind. Our results suggest that zooplankton are highly effective dispersers over short distances, and can disperse via several mechanisms. Local interactions should therefore play a dominant role in structuring these communities at small regional scales.  相似文献   

5.
The aim of this study was to determine the composition of the “spore rain” of ferns and lycopods in a cloud forest. We tested whether the canopy impedes spore dispersal to surrounding areas and how spore dispersal is affected by rainfall. The spores were captured with a modified Bush–Gosling trap placed at 30 cm above ground level in forested and non-forested sites from March 2009 to February 2010. We collected 2462 fern spores from 158 morphospecies of which 76 were identified to species level. Thirty-seven species were found exclusively in the spore rain, and 39 were found as sporophytes as well (local component). Mean daily spore density (spores m?2) was calculated to find the sporulation period for each species. Twenty species showed seasonal patterns of sporulation. The highest spore density was found at the forested site (70 morphospecies and 1856 spores), of which 39 morphospecies (1482 spores) corresponded to the local vegetation. Fifty-five taxa were shared between the forested and non-forested site. In the non-forested site, 605 spores were captured belonging to 64 species. The density of spore rain between sites was significantly different. The rainfall amount was the same at both sites, with a dry period in March, April, and July 2009, and February 2010. There was a negative effect of rainfall on spore rain. The main sporulation occurred in the dry season with strong winds. Although the canopy inhibits airborne dispersal of fern spores, a small amount of spores can disperse beyond the canopy and reach surrounding areas. The rainfall might wash spores to ground and favor the colonization and the establishment of new populations.  相似文献   

6.
Investigating the dispersal of the root-pathogenic fungus Armillaria mellea is necessary to understand its population biology. Such an investigation is complicated by both its subterranean habit and the persistence of genotypes over successive host generations. As such, host colonization by resident mycelia is thought to outcompete spore infections. We evaluated the contributions of mycelium and spores to host colonization by examining a site in which hosts pre-date A. mellea. Golden Gate Park (San Francisco, CA, USA) was established in 1872 primarily on sand dunes that supported no resident mycelia. Genotypes were identified by microsatellite markers and somatic incompatibility pairings. Spatial autocorrelation analyses of kinship coefficients were used to infer spore dispersal distance. The largest genotypes measured 322 and 343 m in length, and 61 of the 90 total genotypes were recovered from only one tree. The absence of multilocus linkage disequilibrium and the high proportion of unique genotypes suggest that spore dispersal is an important part of the ecology and establishment of A. mellea in this ornamental landscape. Spatial autocorrelations indicated a significant spatial population structure consistent with limited spore dispersal. This isolation-by-distance pattern suggests that most spores disperse over a few meters, which is consistent with recent, direct estimates based on spore trapping data.  相似文献   

7.
Despite the importance of mammal‐fungal interactions, tools to estimate the mammal‐assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modeled the probability of spore dispersal by combining animal movement data from GPS telemetry with data on spore gut‐retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of meters—and occasionally up to 1,265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modeling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal‐fungi interactions in other ecosystems.  相似文献   

8.
Fine-scale spatial genetic structure (SGS) of the liverwort, Barbilophozia attenuata, occupying an area characterized by a network of ant trails, was investigated using microsatellite markers. This is the first study investigating SGS in a liverwort. Significant genetic differentiation was detected among colonies along and outside ant trails, and the SGS pattern varied depending on the spatial scale. At short distances, kinship coefficients were significantly positive up to about eight meters, after which they approached zero and turned negative, while at distances greater than 25 m the values were about zero. Thus, nearby individuals are more closely related than expected, at mid-distances less related, and at great distances genotypes show a random distribution. We suggest that the reproductive mode strongly affects SGS in B. attenuata. Asexual propagation by relatively large gemmae allows more effective establishment than sexual reproduction by small-sized spores, and causes an aggregation of similar genotypes, although the inbreeding effect cannot be ruled out. In environments with small-scale disturbances, e.g., ant trails, gemmae are favoured over spores at establishment. Also, the diaspore bank of the forest floor can be activated by disturbances, which may affect SGS. At mid-distances, the isolation by distance effect, presumably related to comparatively ineffective gemma dispersal, is visible, while at greater distances, the role of spores as effective means of dispersal is evident. The Sp statistic values, which quantify the strength of SGS, indicate that outsider colonies possess less SGS than do plant colonies along ant trails, which relates to the more frequent spore production of outsider colonies. Moreover, dispersal from fallen logs or stumps may be more effective than dispersal from ground-level colonies along ant trails. Apparently, ants do not have much role as dispersal vectors, nor do the physical structures of ant trails as dispersal corridors, although they provide open areas for colonization.  相似文献   

9.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

10.
Sawhney  M.  & Chopin  T. 《Journal of phycology》2003,39(S1):50-50
Coalescence in seaweeds is known to occur in the laboratory among young and older sporelings and in the field between neighboring conspecific clumps. However, because spores and germlings are difficult to study in the field, it is as yet unknown at which stage of population development coalescence is most important. Since many seaweeds disperse aggregated propagules, often with a sticky mucilagous envelope around the spores, aggregated recruitment and coalescence might be more important at early stages of population establishment than among fully grown, well established clumps. Using recruitment plates maintained during several experimental times in the field, we are evaluating the above idea with mid-intertidal populations of Mazzaella laminarioides. During high fertility seasons, close to 45% of the spores settling within or at close (<1 m) distances of the bed exhibited aggregated recruitment, forming groups of 2 to 150+spores. The probability of aggregated recruitments is a function of dispersal distance and spore density. The number of sporelings produced is a function of spore density and coalescence. Highest after-recruitment mortality (first 15 days) occurs among solitary recruits, followed by sporelings conformed by small number of spores (2–4). Approximately 50% of the spores recruited, isolated or in group, coalesce within these 15 days, gradually forming massive sporelings with increasingly larger basal areas. Thus, after recruitment, sporelings may disappear (die), survive or coalesce. These three alternatives are integrated in a new demographic model for coalescing seaweeds (supported by grant FONDECYT 1020855).  相似文献   

11.
Dispersal of Septoria nodorum Pycnidiospores by Simulated Rain and Wind   总被引:2,自引:0,他引:2  
The influence of wind on the splash dispersal of Septoria nodorum pycnidiospores was studied in a raintower/wind tunnel complex with single drops or simulated rain falling on spore suspensions or infected stubble with windspeeds of 1.5 to 4 m/sec. When single drops fell on spore suspensions (depth 0.5 mm, concentration 7.8 × 105 spores/ml) most of the spore-carrying droplets collected on fixed photographic film between 0–4 m downwind (windspeed 3 m/sec) were >200 μm in diameter. However, most spores were carried in droplets with diameter > 1000 μm, 70 % of which carried more than 100 spores. When simulated rain fell on infected stubble most of the spore-carrying droplets collected beyond 1 m downwind (windspeeds 1.4 and 4 m/sec) were <200 μm in diameter and none were >600 μm; most of these droplets carried only one spore. The distribution of splash droplets (with diameter >100 μm) deposited on chromatography paper showed a maximum at 40–50 cm upwind of the target but many more droplets were deposited 20–30 cm downwind, when single drops fell on a spore suspension (concentration 1.2 × 105 spores/ ml) containing fluorescein dye with a windspeed of 2 m/sec; droplets were collected up to 3 m downwind but not more than 70 cm upwind. With a windspeed of 3 m/sec, numbers of sporecarrying droplets and spores collected on film decreased with increasing distance downwind; most were collected within 2 m of the target but some were found up to 4 m. When simulated rain fell on infected stubble, increasing the windspeed from 1.5 to 4 m/sec greatly increased the number of spores deposited more than 1 m downwind. At 1.5 m/sec none were collected beyond 2 m downwind, whereas at 4 m/sec some were collected at 4 m. A few air-borne S. nodorum spores were collected by suction samplers at a height of 40 cm at distances up to 10 m downwind of a target spore suspension on which simulated rain fell.  相似文献   

12.
Coalescence in seaweeds is known to occur in the laboratory among young and older sporelings and in the field between neighboring conspecific clumps. However, because spores and germlings are difficult to study in the field, it is as yet unknown at which stage of population development coalescence is most important. Since many seaweeds disperse aggregated propagules, often with a sticky mucilagous envelope around the spores, aggregated recruitment and coalescence might be more important at early stages of population establishment than among fully grown, well established clumps. Using recruitment plates maintained during several experimental times in the field, we are evaluating the above idea with mid‐intertidal populations of Mazzaella laminarioides. During high fertility seasons, close to 45% of the spores settling within or at close (<1 m) distances of the bed exhibited aggregated recruitment, forming groups of 2 to 150+spores. The probability of aggregated recruitments is a function of dispersal distance and spore density. The number of sporelings produced is a function of spore density and coalescence. Highest after‐recruitment mortality (first 15 days) occurs among solitary recruits, followed by sporelings conformed by small number of spores (2–4). Approximately 50% of the spores recruited, isolated or in group, coalesce within these 15 days, gradually forming massive sporelings with increasingly larger basal areas. Thus, after recruitment, sporelings may disappear (die), survive or coalesce. These three alternatives are integrated in a new demographic model for coalescing seaweeds (supported by grant FONDECYT 1020855).  相似文献   

13.
The effects of inoculum forms (single-spore, multi-spores, or colonized root pieces) and host plants (Nicotiana tabacum L., Sorghum sudanense(Piper) Stapf, and Trifolium repens L. ) on the development and inoculum potential (IP) of the arbuscular mycorrhizal fungi (AMF): Glomus macrocarpum Tul & Tul, Glomus mosseae (Nicol & Gerd. ) Gerdemann & Trappe, Glomus versiforme (Karsten) Berch, and Sclerocystis sinuosa Gerdemann & Bakhi cultured in pots were investigated. The lag phase of treatment with 50 spores or 0.5 g (fresh weight) of colonized root pieces was 4 weeks, much shorter than that of the treatment with 1 spore (8 weeks); the value of IP(VIP) and percentage of root colonization(PRC) of the former were greater than those of the latter. Only on the early stages of colonization was there difference between the 50 spores and the 0.5 g (fresh weight) of colonized root piece inoculation treatments. The IP per plant inoculated with 0. 5 g (fresh weight) of colonized mot pieces of AMF was greater than that of the other two treatments except G. vers/forme on Nicotiana tabacum, while the PRC of the plants inoculated with 50 spores and 0. 5 g (fresh weight) of colonized root pieces of AMF was higher than that of the 1 spore inoculation after 10 weeks. The VIP of AMF on Trifolium repens was significantly higher than that on the other two hosts. The VIP of G. mosseae, G. versiforme, and S. sinuosa was respectively greater than that of G. macrocarpum. This suggested that different species of AMF produced different VIP of the inoculum. Nicotiaha tabacum was much better than the other host plants which used to be inoculated with single spore, and to produce inocula of AMF.  相似文献   

14.
To understand the reproduction of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji, Japan, the in situ genet dynamics of sporocarps were analysed. Sporocarps of the two Laccaria species were sampled at fine and large scales for 3 and 2 consecutive years, respectively, and were genotyped using microsatellite markers. In the fine-scale analysis, we found many small genets, the majority of which appeared and disappeared annually. The high densities and annual renewal of Laccaria genets indicate frequent turnover by sexual reproduction via spores. In the large-scale analysis, we found positive spatial autocorrelations in the shortest distance class. An allele-clustering analysis also showed that several alleles were distributed in only a small, localised region. These results indicate that Laccaria spores contributing to sexual reproduction may be dispersed only short distances from sporocarps that would have themselves been established via rare, long-distance spore dispersal. This combination of rare, long-distance and frequent, short-distance Laccaria spore dispersal is reflected in the establishment pattern of seeds of their host, Salix reinii.  相似文献   

15.
An aggregated distribution of dispersed seeds may influence the colonization process in tree communities via inflated spatial uncertainty. To evaluate this possibility, we studied 10 tree species in a temperate forest: one primarily barochorous, six anemochorous and two endozoochorous species. A statistical model was developed by combining an empirical seed dispersal kernel with a gamma distribution of seedfall density, with parameters that vary with distance. In the probability density, the fitted models showed that seeds of Fagaceae (primarily barochorous) and Betulaceae (anemochorous) were disseminated locally (i.e. within 60 m of a mother tree), whereas seeds of Acer (anemochorous) and endozoochorous species were transported farther. Greater fecundity compensated for the lower probability of seed dispersal over long distances for some species. Spatial uncertainty in seedfall density was much greater within 60 m of a mother tree than farther away, irrespective of dispersal mode, suggesting that seed dispersal is particularly aggregated in the vicinity of mother trees. Simulation results suggested that such seed dispersal patterns could lead to sites in the vicinity of a tree being occupied by other species that disperse seeds from far away. We speculate that this process could promote coexistence by making the colonization rates of the species more similar on average and equalizing species fitness in this temperate forest community.  相似文献   

16.
《Journal of bryology》2013,35(4):793-794
Abstract

Occurrence of Ptilidium pulcherrimum in transects and spore dispersal from a single colony have been studied in a coastal spruce forest in northern Sweden. The main substrate type was rotting wood with 75% of all occurrences. Annual spore production was 68,500 spores/m2 forest, 640,000 spores/m2 substrate and 44,000,000 spores/m2 colony. Almost 50% of the spores were deposited within 2.5 m of the colony. Annual spore deposition between colonies was estimated to be between 24,000–39,000 and deposition on the main substrate, decaying logs, was about 340–600 spores/m2 forest. P. pulcherrimum showed a clumped distribution pattern up to about a 15 m neighbourhood distance. This pattern could not be explained by a similar clumping of the substrate. Instead a limitation by distance in establishment due to a deficit of spores is assumed.  相似文献   

17.
Effective dispersal is crucial to species inhabiting transient substrates in order for them to be able to persist in a landscape. Bryophytes, pteridophytes, lichens and fungi all have wind‐dispersed small diaspores and can be efficiently dispersed if their diaspores reach air masses above canopy height. However, empirical data on dispersal over landscape scales are scarce. We investigated how the colonization of an acrocarpous clay‐inhabiting pioneer moss, Discelium nudum, varied between sites that differed in connectivity to potential dispersal sources at spatial scales from 1 to 20 km in a region in northern Sweden. We recorded the colonization on ?25 introduced clay heaps at each of 14 experimental sites some months after the dispersal period. The colonization rate ranged from 0–82% and had a statistically significant relationship with a proxy for potential habitats (amount of clay‐dominated soil) in a buffer of 20 km radius surrounding the experimental sites (and also weakly with the amount of substrate in a 10 km buffer). There were no significant relationships between colonization rate and connectivity at smaller scales (1 and 5 km). We made a rough estimate of the number of spores available for dispersal in a landscape, given the amount of clay‐dominated soil, by recording the number of Discelium nudum colonies in two 25 × 25 km landscapes. The estimated available spore numbers in the different 20 km buffers were of the same order of magnitude as the deposition densities at the experimental sites calculated from the colonization rates. The results suggest that the spores of species with scattered occurrences and small diaspores (25 μm) in open landscapes can be deposited over extensive areas, at rates high enough to drive colonization patterns. This also implies that regional connectivity may be more important than local connectivity for these kinds of species.  相似文献   

18.
1. In obligate symbioses with horizontal transmission, the population dynamics of the partner organisms are highly interdependent. Host population size limits symbiont number, and distribution of partners is restricted by the presence and thus dispersal abilities of their respective partner. The Crematogaster decameraMacaranga hypoleuca ant–plant symbiosis is obligate for both partners. Host survival depends on colonisation by its ant partner while foundress queens require hosts for colony establishment. 2. An experimental approach and population genetic analyses were combined to estimate dispersal distances of foundresses in their natural habitat in a Bornean primary rainforest. 3. Colonisation frequency was significantly negatively correlated with distance to potential reproductive colonies. Results were similar for seedlings at natural densities as well as for seedlings brought out in the area experimentally. Population genetic analysis revealed significant population differentiation with an FST of 0.041 among foundresses (n = 157) located at maximum 2280 m apart. In genetic spatial autocorrelation, genotypes of foundresses were significantly more similar than expected at random below 550 m and less similar above 620 m. Direct estimation of dispersal distances by pedigree analysis yielded an average dispersal distance of 468 m (maximum 1103 m). 4. For ants that disperse on the wing, genetic differentiation at such small spatial scales is unusual. The specific nesting requirements of the queens and the necessity for queens to find a host quickly could lead to colonisation of the first suitable seedling encountered, promoting short dispersal distances. Nonetheless, dispersal distances of C. decamera queens may vary with habitat or host spatial distribution.  相似文献   

19.
研究了在贫营养基质中不同强度Hoagland营养液对丛枝菌根(Arbuscular mycorrhizae, M)真菌Glomus versiforme生长发育的影响。结果表明:本试验条件下,菌根侵染率、菌丝量、孢子数间呈显著正相关。在施加5%~50%强度Hoagland营养液时, 菌根真菌的生长与宿主植物高粱根中磷浓度、可溶性糖浓度密切相关,而与氮浓度无显著相关。由此认为:在盆栽生产菌根菌剂时,基质中存在一个临界磷浓度,在这个临界浓度之下,菌根真菌的生长发育随磷浓度的提高而增长,超过该临界浓度则会随磷浓度的提高而下降。施用20%、50%强度Hoagland营养液对菌根真菌生长最为有利,其菌根侵染率、菌丝量、孢子数均高于其它处理,因此认为:宿主植物—菌根真菌之间共生关系的基础是营养条件,基质中养分的高低会影响互惠共生关系的建立和发展。在高质量菌剂生产中, 菌根共生体双方的生长发育完全可以由人工控制。施加营养液是一种有效的调控手段,有可能使共生平衡向有利于菌根真菌生长发育的方向倾斜,使真菌得到最大程度的生长。  相似文献   

20.
Glomus caledonium was established in a dual culture with Ri T-DNA-transformed carrot roots. A modification of the minimal M medium buffered at pH 6.50 with 10 mM MES and solidified with 0.4% unpurified gellan gum allowed spore germination and formation of the symbiosis, together with the development of an extensive extramatrical mycelium and sporulation. Spore production increased with culture generation and most spores were viable. These spores colonized carrot roots and completed the fungal life cycle. In many cultures, sporulation was accompanied by the formation of arbuscule-like structures on short and thickened lateral branches of main hyphae. Root colonization was of the Paris-type with hyphae spreading intracellularly. Most colonized root cells contained coils of thickened hyphae, sometimes surrounded by fine hyphae, but no typical arbuscules were observed. Accepted: 26 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号