首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N. Cappuccino 《Oecologia》1988,76(4):607-610
Summary The two aphid species feeding on goldenrod (Solidago altissima) in northern Florida (U.S.A.) exhibited behavioral differences that resulted in characteristic spatial patterns. Uroleucon nigrotuberculatum alates (winged forms) aggregated when colonizing stems and subsequent non-winged generations were relatively sedentary, resulting in a clumped spatial pattern. U. tissoti colonized stems singly and was more mobile; these behaviors resulted in its more random spatial pattern within fields of goldenrod.Manipulations of aphid density in the field revealed that although patches with high densities of aphids accumulated more predators than patches with few aphids, predation pressure (measured as number of predators per aphid) was lower in dense patches. As a result, aphids in dense patches had a higher per capita change in density than aphids in sparse patches. However, when the fungal pathogen, Neozygites fresenii, became the dominant mortality agent, the influence of aphid density on mortality was reversed; aphids in dense patches were then more vulnerable than aphids in sparse patches. Thus the spatial patterns exhibited by the U. nigrotuberculatum and U. tissoti resulted in differences in their relative vulnerability to different natural enemies.  相似文献   

2.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

3.
  • 1 The present study evaluated the population dynamics of the heteroecious soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) during an 8‐year period in Indiana, shortly after its detection in North America. Sampling conducted at multiple locations revealed that A. glycines exhibited a 2‐year oscillation cycle that repeated itself four times between 2001 and 2008: years of low aphid abundance were consistently followed by years of high aphid abundance.
  • 2 Similar patterns of abundance of A. glycines and coccinellids (Coleoptera: Coccinellidae) in soybean fields, both within and between‐years, suggest that late season predation by coccinellids plays a role in the oscillatory cycle of aphids. Insidious flower bugs Orius insidiosus (Say) (Hemiptera: Anthocoridae) were numerically more abundant than coccinellids, although the lack of synchrony between aphids and predatory bugs suggests that O. insidiosus has a limited influence on between‐year variations in aphid density.
  • 3 The inverse relationship between aphid densities before and after the start of the autumn migratory period changes direction in alternate years. High aphid density on soybean in the summer is associated with a reduced number of alate migrants produced in the autumn. Conversely, years with low density aphids on soybean in the summer are characterized by high numbers of alates that migrate to the primary host in the autumn.
  • 4 From a pest management perspective, the 2‐year oscillation cycle of A. glycines is a desirable attribute with respect to population dynamics because it implies that aphids cause significant economic damage only in alternate years (as opposed to every year). Cultural practices enhancing the conservation biological control of Coccinellidae may help to preserve the periodicity of aphid infestation and restrict the pest status of A. glycines.
  相似文献   

4.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

5.
Improved understanding of coccinellid activity and predation on aphids in the field could clarify their potential in aphid biological control. Our objective was to determine the influence of abiotic and biotic factors on activity and predation by adults of three coccinellid species (Hippodamia convergens Guerin-Meneville, H. tredecimpunctata tibialis (Say), and Coleomegilla maculata DeGeer) in spring cereal fields. The proportion of time coccinellids spent searching was correlated with air temperature, aphid density, and time of day. The relationship between searching and these variables differed among species. Mean walking speed ranged from 66.4 cm/min for C. maculata to 83.2 cm/min for H. tredecimpunctata and increased with temperature for all species. The frequency of short flights (<2 m) by beetles increased with temperature and decreased with increasing aphid density for all species, but the relationship of short flight frequency to these variables differed among species. The frequency of long flights (>2 m) was similar for all species and influenced by temperature and calendar date. The frequencies with which aphids were encountered and eaten were correlated with aphid density and temperature for H. convergens and H. tredecimpunctata. Despite over 250 h spent observing adult coccinellid behavior in the field, predation data were insufficient to develop a useful predation model.  相似文献   

6.
Intraguild predators and the spatial distribution of a parasitoid   总被引:3,自引:0,他引:3  
An experimental plot of the aphid Aphis fabae on various host plant species was colonized by natural populations of the aphidiine parasitoid Lysiphlebus fabarum and insect predators, especially coccinellids. Parasitism of A. fabae by L. fabarum was significantly depressed on plants bearing coccinellids. The number of parasitized aphids increased with aphid abundance on three plant species (Papaver dubium, Rumex obtusifolius, Vicia faba), but not on the plant species (Chenopodium album) which bore very high numbers of coccinellids. In complementary laboratory experiments, L. fabarum offered a choice between odours of plants infested with A. fabae and/or coccinellids selected the odour fields from coccinellid treatments at significantly lower frequency than the odour fields of other treatments. It is concluded that avoidance of coccinellids by L. fabarum contributes to the negative association between the abundance of coccinellids and parasitoids in the field. Received: 22 March 1999 / Accepted: 22 March 2000  相似文献   

7.
The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ) in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt)+CpTI (Cowpea trypsin inhibitor) cotton field in 2011. The aphid population growth in the open field (control) was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1%) and spiders (1.5%). The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma). Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation). The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.  相似文献   

8.
The aphids Lipaphis erysimi pseudobrassicae (Davis) and Myzus persicae (Sulzer) pose serious threats to the production of cruciferous crops in the tropics. Understanding their population dynamics is important for developing integrated pest management programmes to minimize their damage to crops. This study investigated the effects of climatic factors, natural enemies and plant age on the population dynamics of these pests. The population density of aphids and their natural enemies in 20 cabbage plants, and weather conditions were monitored for five cropping seasons from 2019 to 2021 in two agroecological zones of Ghana (Coastal Savannah and Deciduous Forest zones). The highest population density of L. e pseudobrassicae was recorded in January (dry season) in both agroecological zones, while the highest population density for M. persicae occurred in September (minor rainy season) and August (dry spell) in the Coastal Savannah and Deciduous Forest zones, respectively. The highest aphid densities were noted to occur during periods with low relative humidity and low rainfall. The population density of L. e. pseudobrassicae was significantly negatively related to plant age, air temperature and relative humidity, and positively related to syrphids (Paragus borbonicus) and spiders in the Coastal Savannah zone, while in the Deciduous Forest zone, it was significantly positively related to coccinellids. On the other hand, M. persicae population density was significantly positively related to syrphids and coccinellids in the Deciduous Forest zone. Rainfall negatively affected syrphids in the Coastal Savannah zone, while air temperature positively affected syrphids and negatively affected spiders in the Deciduous Forest zone. Coccinellids had a significant positive relationship with relative humidity in the Deciduous Forest zone. This study provides important insights into the key factors that regulate aphid population densities on cabbage and will support development of timely interventions to manage these pests.  相似文献   

9.
In the present study, we investigated the natural control of aphids by predators in wheat fields in a low (L) and high-input cropping region (H) of Germany during a 10-year period. Data for the statistical analyses were obtained from weekly after the start of aphid emergence. The mean annual aphid indices, calculated as the sum of Sitobion avenae (Fabr.), Rhopalosiphum padi (L.), Metopolophium dirhodum (Walk.)(Homoptera: Aphididae), were 30.4 and 81.5 × 103 aphid days per m2, for L and H, respectively. Nine predator fractions were analysed: Coccinella septempunctata L., adults (1) and larvae (2), Propylea quatuordecimpunctata (L.) (Coleoptera: Coccinellidae) adults (3) and larvae (4), syrphid larvae (mostly Episyrphus balteatus [De Geer] (Diptera: Syrphidae)) (5), Chrysoperla carnea Steph. (Neuroptera: Chrysopidae) larvae (6), and adult carabids (7), staphylinids (8) and spiders (9). The two sites were comparable in terms of the mean size of the overall predator community, expressed in predator units (PU): 4.9 PU/m2 (L) vs. 5.4 PU/m2 (H). Most predator fractions responded numerically to increasing aphid densities. The numerical response was strongest in syrphid larvae, scarcely detectable in adult coccinellids, and virtually non-existent in epigeic arthropods. Multiple regression models revealed indirect relationships between the weekly overall predator community densities (PU/m2) and individual predator fractions (individuals/m2) and absolute rates of aphid density increase (individuals/m2) one or two weeks after baseline. A site-independent reduction of the aphid density increase to nil (y = 0) was observed at 3.9 to 4.2 PU/m2. Consequently, the 2.7 times higher aphid density at H cannot be attributed to the presence of fewer predators or lower effects of the overall predator community or of any individual predator fraction.  相似文献   

10.
The role of natural enemy guilds in Aphis glycines suppression   总被引:1,自引:0,他引:1  
Generalist natural enemy guilds are increasingly recognized as important sources of mortality for invasive agricultural pests. However, the net contribution of different species to pest suppression is conditioned by their biology and interspecific interactions. The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is widely attacked by generalist predators, but the relative impacts of different natural enemy guilds remains poorly understood. Moreover, low levels of A. glycines parasitism suggest that resident parasitoids may be limited through intraguild predation. During 2004 and 2005, we conducted field experiments to test the impact of different guilds of natural enemies on A. glycines. We contrasted aphid abundance on field cages with ambient levels of small predators (primarily Orius insidiosus) and parasitoids (primarily Braconidae), sham cages and open controls exposed to large predators (primarily coccinellids), and cages excluding all natural enemies. We observed strong aphid suppression (86- to 36-fold reduction) in treatments exposed to coccinellids, but only minor reduction due to small predators and parasitoids, with aphids reaching rapidly economic injury levels when coccinellids were excluded. Three species of resident parasitoids were found attacking A. glycines at very low levels (<1% parasitism), with no evidence that intraguild predation by coccinellids attenuated parasitoid impacts. At the plant level, coccinellid impacts resulted in a trophic cascade that restored soybean biomass and yield, whereas small natural enemies provided only minor protection against yield loss. Our results indicate that within the assemblage of A. glycines natural enemies in Michigan, coccinellids are critical to maintain aphids below economic injury levels.  相似文献   

11.
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies.  相似文献   

12.
Aspects of life-table studies and functional response of Lysiphlebia mirzai   总被引:1,自引:0,他引:1  
The fecundity, reproductive rate, and survival of Lysiphlebia mirzai parasitising third instar nymphs of the cereal aphid Rhopalosiphum maidis were measured at six different host densities under constant laboratory conditions. The survival rate (lx) of the female parasitoids was unaffected by host density, with an average adult life-span of 5–6 days at all densities. The age-specific fecundity rate (mx) was host density-dependent. The value of mx decreased rapidly from the first day of parasitisation. The number of hosts available determined the maximum possible number of mummies. At 200 hosts available per day, the average fecundity was 184.6 mummies/female; the maximum number of mummies yielded by any female was 200. The relationship between host density and the number of aphids parasitised per female was linear at 50 aphids/cage/day, but at higher host densities (100 aphids/cage/day) a significant curvilinear regression was observed. The intrinsic rate of natural increase (rm) increased with increasing host density. Maximum value of rm (0.262) was obtained at a host density of 200. The response of rm to changes in host density and parasitoid sex ratio is shown. A typical type II functional response was observed for L. mirzai. The curve was described by a logistic curve, Np=200/[1+exp(5.65–1.60 ln No)]. The search rate of the parasitoid was inverse host density-dependent. No significant variation in the sex ratio of F1 offspring was observed at different initial host densities. Sex ratio values exceeded 0.5 at all host densities. The results evaluated the reproductive potential of L. mirzai as a promising biological control agent.  相似文献   

13.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

14.
The densities of barley and potato aphids, their natural enemies and hyperparasitoids were assessed in three experimental potato fields as a case study to investigate the effectiveness of the addition of barley strips in potato fields for conservation biological control. These fields were located in a low plant-diversity landscape, but common aphid species and their natural enemies were present. The barley strips in the potato fields were found to support different species of aphids of potato, but these different sets of aphids shared a common set of natural enemies. The amount of time between peak aphid densities and peaks of their natural enemies' populations was shorter in the potato fields than in the barley strips. The levels of winged aphids in a potato monoculture field were significantly higher than those in a field with barley strips. The wingless and winged aphid populations in the field without barley strips was almost three times higher than in the fields with the barley strips, as measured at the peak aphid density. This result is one of few examples of the application of the conservation effect of greenhouse banker plants on outdoor crops.  相似文献   

15.
The distribution of aphid predators within arable fields has been previously examined using pitfall traps. With this technique predominantly larger invertebrate species are captured, especially Carabidae, but the technique provides no estimate of density unless mark-recapture is used. However, many other numerically important aphid predators occur in arable fields and relatively little is known about their distribution patterns nor whether they exhibit a density-dependent response to patches of cereal aphids. Identification of the most effective predators can allow management practices to be developed accordingly. In this study, the distribution of cereal aphids and their predators was examined by suction sampling within a field of winter wheat in Devon, UK, along with visual estimates of weed patchiness. Sampling was conducted on four occasions in 1999 across a grid of 128 sample locations. The distribution of 11 predatory taxa from the Carabidae, Staphylinidae and Linyphiidae was examined. Additionally, the total number of aphid predators and a predation index were used in these analyses. Carabid adults and larvae, along with staphylinid larvae showed the strongest aggregation into patches and the most temporal stability in their distribution. Other taxa had more ephemeral distributions as did the cereal aphids. The distribution of carabid larvae was disassociated from the distribution of cereal aphids for the first two sampling occasions indicating biocontrol was occurring. Other predatory groups showed both association and disassociation. Carabid larvae, Bathyphantes and total numbers of Linyphiidae showed a strong correlation with weed cover for two of the sample dates. Cereal aphids were disassociated from weed cover on three sampling occasions.  相似文献   

16.
Interactions between ants and aphidophagous and coccidophagous ladybirds   总被引:2,自引:0,他引:2  
Aphidophagous and coccidophagous coccinellids come into conflict with homopteran-tending ants for access to food. Antagonistic interactions between coccinellids and ants may be competitive or non-competitive. Competitive interactions occur when coccinellids attack aphids or coccids that are being tended by ants for honeydew. Non-competitive interactions include all interactions away from ant-tended homopteran colonies. We here review observations and studies of such interactions. We note that most competitive interactions occur at times when untended aphids/coccids are scarce. We describe the chemical and physical defences that coccinellids use against ant aggression and consider whether these have evolved as general anti-predator deterrents or specifically in response to ants. Myrmecophilous coccinellids are then considered, with particular focus on the two most studied species, Coccinella magnifica and Platynaspis luteorubra. We note that the myrmecophily of the two species has the same adaptive rationale—to enable the ladybirds to prey on ant-tended aphids at times of aphid scarcity—but that it is based on different traits to facilitate life with ants. Finally, we consider the role of ants in the evolution of habitat specialisation in some coccinellids.  相似文献   

17.
利用灰色系统理论,将麦双尾蚜Diuraphis noxia (Mordvilko) 种群消长动态与麦田生物群落中主要生物因子和非生物因子进行灰色关联分析。结果表明影响麦双尾蚜及其它麦蚜种群消长的关键因子主要为麦蚜间的竞争和天敌的捕食压力。非生物因子的作用较小,其中较重要的因子有平均相对湿度和降水量。在塔城小麦田中关键天敌类群为瓢虫类,寄生天敌的影响较小;在伊犁小麦田中,麦双尾蚜及其它麦蚜的关键天敌类群为蚜小蜂类,大麦田中斑腹蝇类较重要,燕麦田中瓢虫类占优势。  相似文献   

18.
Generalist natural enemies may be well adapted to annual crop systems in which pests and natural enemies re-colonize fields each year. In addition, for patchily-distributed pests, a natural enemy must disperse within a crop field to arrive at infested host patches. As they typically have longer generation times than their prey, theory suggests that generalist natural enemies need high immigration rates to and within fields to effectively suppress pest populations. The soybean aphid, Aphis glycines Matsumura, is a pest of an annual crop and is predominantly controlled by coccinellids. To test if rates of coccinellid arrival at aphid-infested patches are crucial for soybean aphid control, we experimentally varied coccinellid immigration to 1 m2 soybean patches using selective barriers and measured effects on A. glycines populations. In a year with low ambient aphid pressure, naturally-occurring levels of coccinellid immigration to host patches were sufficient to suppress aphid populations, while decreasing coccinellid immigration rates resulted in large increases in soybean aphid populations within infested patches. Activity of other predators was low in this year, suggesting that most of the differences in aphid population growth were due to changes in coccinellid immigration. Alternatively, in a year in which alate aphids continually colonized plots, aphid suppression was incomplete and increased activity of other predatory taxa contributed to adult coccinellid predation of A. glycines. Our results suggest that in a system in which natural enemy populations cannot track pest populations through reproduction, immigration of natural enemies to infested patches can compensate and result in pest control.  相似文献   

19.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

20.
《Journal of Asia》2002,5(2):185-191
The vertical and temporal distribution of an aphid, Aphis gossypii Glover, and the coccinellid populations on six chilli varieties were studied. The total number of apterous aphid per plant stratum was significantly different among plant strata of a particular variety (treatment) as well as among the treatments. Generally, the total number of aphids was significantly greater in the lower stratum than in the middle and upper strata. However, the varieties with erect and open plant architecture (Kulai and MC 11) had significantly less number of apterous aphids at all strata as compared to varieties with compact or prostrate plant architectures. There was a significant difference in the total number of coccinellids per plant strata among the treatments but not within a treatment. The distribution of apterous aphid populations varied significantly among sampling periods and treatments. The temporal distribution of coccinellids showed a similar trend as that of apterous aphids. The total number of alate aphids caught per week was significantly different among the sampling periods. However, its population was significantly greater during the early season and gradually declined as the season progressed except during June 18 to 24. The importance of recording the most observed coccinellids species, which limit the aphid populations at each particular plant stratum per variety, and the conditions that favor natural enemies are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号